IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v96y2019i2d10.1007_s11069-019-03569-5.html
   My bibliography  Save this article

The relationship between the Normalized Difference Vegetation Index and drought indices in the South Central United States

Author

Listed:
  • Nazla Bushra

    (Louisiana State University)

  • Robert V. Rohli

    (Louisiana State University)

  • Nina S. N. Lam

    (Louisiana State University)

  • Lei Zou

    (Louisiana State University)

  • Rubayet Bin Mostafiz

    (Louisiana State University)

  • Volodymyr Mihunov

    (Louisiana State University)

Abstract

Drought indices are useful for quantifying drought severity and have shown mixed success as an indicator of drought damage and biophysical dryness. While spatial downscaling of drought indicators from the climate divisional level to the county level has been conducted successfully in previous work, little research to date has attempted to “upscale” remotely sensed biophysical indicators to match the downscaled drought indices. This upscaling is important because drought damage and indices are often reported at a coarser scale than the biophysical indicators provide. This research upscales National Oceanic and Atmospheric Administration’s Advanced Very High Resolution Radiometer sensor-acquired Normalized Difference Vegetation Index (NDVI) data to produce a county-level biophysical drought index, for a five-state region of the South Central United States. The county-level NDVI is then correlated with the downscaled drought indices for assessing the degree to which the biophysical data match well-documented drought indicators. Results suggest that the Palmer Drought Severity Index and Palmer Hydrologic Drought Index are effective indicators of biophysical drought in much of the arid western part of the study area and in larger swaths of the study area in summer. In nearly all cases except for autumn months, correlations are weakest in the ecotones, with significant negative correlations in the humid eastern part of the study area. Results generally corroborate the findings of recent research that correlations between drought indices and biophysical drought vary spatially. As long-lead climate forecasts continue to improve, these results can assist environmental planners in preparing for the impacts of drought.

Suggested Citation

  • Nazla Bushra & Robert V. Rohli & Nina S. N. Lam & Lei Zou & Rubayet Bin Mostafiz & Volodymyr Mihunov, 2019. "The relationship between the Normalized Difference Vegetation Index and drought indices in the South Central United States," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 791-808, March.
  • Handle: RePEc:spr:nathaz:v:96:y:2019:i:2:d:10.1007_s11069-019-03569-5
    DOI: 10.1007/s11069-019-03569-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-019-03569-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-019-03569-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yi Liu & Xiaoli Yang & Liliang Ren & Fei Yuan & Shanhu Jiang & Mingwei Ma, 2015. "A New Physically Based Self-Calibrating Palmer Drought Severity Index and its Performance Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4833-4847, October.
    2. C. S. Murthy & Jyoti Singh & Pavan Kumar & M. V. R. Sesha Sai, 2016. "Meteorological drought analysis over India using analytical framework on CPC rainfall time series," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 573-587, March.
    3. Volodymyr V. Mihunov & Nina S. N. Lam & Lei Zou & Robert V. Rohli & Nazla Bushra & Margaret A. Reams & Jennifer E. Argote, 2018. "Community Resilience to Drought Hazard in the South-Central United States," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 108(3), pages 739-755, May.
    4. M. Ionita & P. Scholz & S. Chelcea, 2016. "Assessment of droughts in Romania using the Standardized Precipitation Index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1483-1498, April.
    5. Ely Yacoub & Gokmen Tayfur, 2017. "Evaluation and Assessment of Meteorological Drought by Different Methods in Trarza Region, Mauritania," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 825-845, February.
    6. C. Murthy & Jyoti Singh & Pavan Kumar & M. Sesha Sai, 2016. "Meteorological drought analysis over India using analytical framework on CPC rainfall time series," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 573-587, March.
    7. Abdol Rassoul Zarei & Mohammad Mehdi Moghimi & Mohammad Reza Mahmoudi, 2016. "Analysis of Changes in Spatial Pattern of Drought Using RDI Index in south of Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3723-3743, September.
    8. X. Zhang & Y. Yamaguchi, 2014. "Characterization and evaluation of MODIS-derived Drought Severity Index (DSI) for monitoring the 2009/2010 drought over southwestern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2129-2145, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nana Luo & Dehua Mao & Bolong Wen & Xingtu Liu, 2020. "Climate Change Affected Vegetation Dynamics in the Northern Xinjiang of China: Evaluation by SPEI and NDVI," Land, MDPI, vol. 9(3), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bilel Zerouali & Mohamed Chettih & Zaki Abda & Mohamed Mesbah & Celso Augusto Guimarães Santos & Reginaldo Moura Brasil Neto & Richarde Marques Silva, 2021. "Spatiotemporal meteorological drought assessment in a humid Mediterranean region: case study of the Oued Sebaou basin (northern central Algeria)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 689-709, August.
    2. Sohail Abbas & Shazia Kousar, 2021. "Spatial analysis of drought severity and magnitude using the standardized precipitation index and streamflow drought index over the Upper Indus Basin, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 15314-15340, October.
    3. Nayan D. Zagade & Bhavana N. Umrikar, 2021. "Drought severity modeling of upper Bhima river basin, western India, using GIS–AHP tools for effective mitigation and resource management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1165-1188, January.
    4. Omolola M. Adisa & Muthoni Masinde & Joel O. Botai & Christina M. Botai, 2020. "Bibliometric Analysis of Methods and Tools for Drought Monitoring and Prediction in Africa," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    5. Ionuţ Minea & Marina Iosub & Daniel Boicu, 2022. "Multi-scale approach for different type of drought in temperate climatic conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1153-1177, January.
    6. U. Surendran & B. Anagha & P. Raja & V. Kumar & K. Rajan & M. Jayakumar, 2019. "Analysis of Drought from Humid, Semi-Arid and Arid Regions of India Using DrinC Model with Different Drought Indices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1521-1540, March.
    7. Ionel Muntele & Marinela Istrate & Raluca Ioana Horea-Șerban & Alexandru Banica, 2021. "Demographic Resilience in the Rural Area of Romania. A Statistical-Territorial Approach of the Last Hundred Years," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    8. Manman Zhang & Dang Luo & Yongqiang Su, 2022. "Drought monitoring and agricultural drought loss risk assessment based on multisource information fusion," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 775-801, March.
    9. Wei Pei & Qiang Fu & Dong Liu & Tianxiao Li & Kun Cheng & Song Cui, 2019. "A Novel Method for Agricultural Drought Risk Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2033-2047, April.
    10. Jinglu Song & Bo Huang & Rongrong Li & Rishikesh Pandey, 2020. "Construction of the Scale-Specific Resilience Index to Facilitate Multiscale Decision Making in Disaster Management: A Case Study of the 2015 Nepal Earthquake," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 148(1), pages 189-223, February.
    11. Yu Peng & Jingyi Song & Tiantian Cui & Xiang Cheng, 2017. "Temporal–spatial variability of atmospheric and hydrological natural disasters during recent 500 years in Inner Mongolia, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 441-456, October.
    12. Chujie Gao & Haishan Chen & Shanlei Sun & Victor Ongoma & Wenjian Hua & Hedi Ma & Bei Xu & Yang Li, 2018. "A potential predictor of multi-season droughts in Southwest China: soil moisture and its memory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 553-566, March.
    13. Mahmoudi, Mohammad Reza, 2021. "A computational technique to classify several fractional Brownian motion processes," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    14. Abdol Rassoul Zarei & Mohammad Mehdi Moghimi & Mohammad Reza Mahmoudi, 2016. "Parametric and Non-Parametric Trend of Drought in Arid and Semi-Arid Regions Using RDI Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5479-5500, November.
    15. Fengjie Gao & Si Zhang & Rui Yu & Yafang Zhao & Yuxin Chen & Ying Zhang, 2023. "Agricultural Drought Risk Assessment Based on a Comprehensive Model Using Geospatial Techniques in Songnen Plain, China," Land, MDPI, vol. 12(6), pages 1-19, June.
    16. Lu Wu & Liping Feng & Yizhuo Li & Jing Wang & Lianhai Wu, 2019. "A Yield-Related Agricultural Drought Index Reveals Spatio-Temporal Characteristics of Droughts in Southwestern China," Sustainability, MDPI, vol. 11(3), pages 1-13, January.
    17. Yonca Cavus & Kerstin Stahl & Hafzullah Aksoy, 2022. "Revisiting Major Dry Periods by Rolling Time Series Analysis for Human-Water Relevance in Drought," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2725-2739, June.
    18. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Xu, Yang & Hao, Fanghua, 2021. "Agricultural drought prediction in China based on drought propagation and large-scale drivers," Agricultural Water Management, Elsevier, vol. 255(C).
    19. Gauranshi Raj Singh & Manoj Kumar Jain & Vivek Gupta, 2019. "Spatiotemporal assessment of drought hazard, vulnerability and risk in the Krishna River basin, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 611-635, November.
    20. Chaitanya B. Pande & N. L. Kushwaha & Israel R. Orimoloye & Rohitashw Kumar & Hazem Ghassan Abdo & Abebe Debele Tolche & Ahmed Elbeltagi, 2023. "Comparative Assessment of Improved SVM Method under Different Kernel Functions for Predicting Multi-scale Drought Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1367-1399, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:96:y:2019:i:2:d:10.1007_s11069-019-03569-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.