IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i2d10.1007_s11069-024-06906-5.html
   My bibliography  Save this article

An evaluation of spatiotemporal changes of meteorological drought in the Mediterranean sub-basins in Türkiye using discrepancy precipitation and standardized precipitation index

Author

Listed:
  • Serin Değerli Şimşek

    (Adana Alparslan Türkeş Science and Technology University)

  • Evren Turhan

    (Adana Alparslan Türkeş Science and Technology University)

Abstract

Detecting dry and wet periods is crucial for regions susceptible to drought impacts. The present study analyzed the dry and wet periods using precipitation data obtained from 8 gauging stations along the Central Mediterranean coast of Türkiye. A span of 52 years, from 1970 to 2021, was examined utilizing three distinct methods: the Standardized Precipitation Index (SPI-Gamma, SPI-Lognormal), Discrepancy Precipitation Index (DPI), and Reconnaissance Drought Index (RDI). Initially, the study discussed the changes in dry and wet periods observed at the respective stations. Subsequently, it determined the transition probabilities associated with classifications of drought. The results showed that SPI-G values exhibit greater precision in detecting wet periods, while the SPI-L method yields more specific outcomes in identifying dry periods. Notably, the DPI method demonstrates a higher frequency of dry periods than the SPI method. Additionally, findings from the SPI method suggest that reductions in drought indices correspond to an increased occurrence of drought. The DPI method’s outputs indicate fewer occurrences of wet periods across all stations in contrast to the results obtained through the SPI method. The study stands out by addressing the assessment of drought development in the Mediterranean coastal regions of Türkiye using the DPI method, which has recently garnered attention in the literature, presenting a novel contribution within the scope of this research.

Suggested Citation

  • Serin Değerli Şimşek & Evren Turhan, 2025. "An evaluation of spatiotemporal changes of meteorological drought in the Mediterranean sub-basins in Türkiye using discrepancy precipitation and standardized precipitation index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(2), pages 2293-2322, January.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:2:d:10.1007_s11069-024-06906-5
    DOI: 10.1007/s11069-024-06906-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06906-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06906-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roman Rolbiecki & Ali Yücel & Joanna Kocięcka & Atılgan Atilgan & Monika Marković & Daniel Liberacki, 2022. "Analysis of SPI as a Drought Indicator during the Maize Growing Period in the Çukurova Region (Turkey)," Sustainability, MDPI, vol. 14(6), pages 1-29, March.
    2. Nur Mohamed Muse & Gokmen Tayfur & Mir Jafar Sadegh Safari, 2023. "Meteorological Drought Assessment and Trend Analysis in Puntland Region of Somalia," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    3. Cihangir Koycegiz & Meral Buyukyildiz, 2023. "Investigation of spatiotemporal variability of some precipitation indices in Seyhan Basin, Turkey: monotonic and sub-trend analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2211-2244, March.
    4. Siddig, Khalid & Stepanyan, Davit & Wiebelt, Manfred & Grethe, Harald & Zhu, Tingju, 2020. "Climate change and agriculture in the Sudan: Impact pathways beyond changes in mean rainfall and temperature," Ecological Economics, Elsevier, vol. 169(C).
    5. Panagiotis Angelidis & Fotios Maris & Nikos Kotsovinos & Vlassios Hrissanthou, 2012. "Computation of Drought Index SPI with Alternative Distribution Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2453-2473, July.
    6. Ely Yacoub & Gokmen Tayfur, 2017. "Evaluation and Assessment of Meteorological Drought by Different Methods in Trarza Region, Mauritania," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 825-845, February.
    7. G. Tsakiris & D. Pangalou & H. Vangelis, 2007. "Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 821-833, May.
    8. Niranga Alahacoon & Mahesh Edirisinghe & Manjula Ranagalage, 2021. "Satellite-Based Meteorological and Agricultural Drought Monitoring for Agricultural Sustainability in Sri Lanka," Sustainability, MDPI, vol. 13(6), pages 1-28, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dilayda Soylu Pekpostalci & Rifat Tur & Ali Danandeh Mehr & Mohammad Amin Vazifekhah Ghaffari & Dominika Dąbrowska & Vahid Nourani, 2023. "Drought Monitoring and Forecasting across Turkey: A Contemporary Review," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    2. Milan Gocic & Slavisa Trajkovic, 2014. "Drought Characterisation Based on Water Surplus Variability Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3179-3191, August.
    3. Majid Montaseri & Babak Amirataee & Rizwan Nawaz, 2017. "A Monte Carlo Simulation-Based Approach to Evaluate the Performance of three Meteorological Drought Indices in Northwest of Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1323-1342, March.
    4. Peyman Mahmoudi & Alireza Ghaemi & Allahbakhsh Rigi & Seyed Mahdi Amir Jahanshahi, 2021. "RETRACTED ARTICLE: Recommendations for modifying the Standardized Precipitation Index (SPI) for Drought Monitoring in Arid and Semi-arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3253-3275, August.
    5. Fadhilah Yusof & Foo Hui-Mean & Jamaludin Suhaila & Zulkifli Yusof, 2013. "Characterisation of Drought Properties with Bivariate Copula Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4183-4207, September.
    6. Fernando Oñate-Valdivieso & Veronica Uchuari & Arianna Oñate-Paladines, 2020. "Large-Scale Climate Variability Patterns and Drought: A Case of Study in South – America," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 2061-2079, April.
    7. Ioannis M. Kourtis & Harris Vangelis & Dimitris Tigkas & Anna Mamara & Ioannis Nalbantis & George Tsakiris & Vassilios A. Tsihrintzis, 2023. "Drought Assessment in Greece Using SPI and ERA5 Climate Reanalysis Data," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    8. Abolfazl Mosaedi & Hamid Zare Abyaneh & Mohammad Ghabaei Sough & S. Samadi, 2015. "Quantifying Changes in Reconnaissance Drought Index using Equiprobability Transformation Function," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2451-2469, June.
    9. Erhan Şener & Ayşen Davraz, 2024. "Comparison of drought indices in the analysis of temporal and spatial changes of climatic drought events: a case study in the Egirdir Lake basin (Isparta/Turkey)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(14), pages 12817-12849, November.
    10. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    11. Mohammad Ghabaei Sough & Hamid Zare Abyaneh & Abolfazl Mosaedi, 2018. "Assessing a Multivariate Approach Based on Scalogram Analysis for Agricultural Drought Monitoring," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3423-3440, August.
    12. Coderoni, Silvia & Pagliacci, Francesco, 2023. "The impact of climate change on land productivity. A micro-level assessment for Italian farms," Agricultural Systems, Elsevier, vol. 205(C).
    13. Dimitrios Myronidis & Konstantinos Ioannou & Dimitrios Fotakis & Gerald Dörflinger, 2018. "Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1759-1776, March.
    14. Brunella Bonaccorso & David Peres & Antonio Castano & Antonino Cancelliere, 2015. "SPI-Based Probabilistic Analysis of Drought Areal Extent in Sicily," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 459-470, January.
    15. Konstantinos Spiliotis & Konstantinos Voudouris & Harris Vangelis & Mike Spiliotis, 2025. "Analysis of Annual Drought Episodes Using Complex Networks," Sustainability, MDPI, vol. 17(4), pages 1-17, February.
    16. Pere Quintana-Seguí & Anaïs Barella-Ortiz & Sabela Regueiro-Sanfiz & Gonzalo Miguez-Macho, 2020. "The Utility of Land-Surface Model Simulations to Provide Drought Information in a Water Management Context Using Global and Local Forcing Datasets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(7), pages 2135-2156, May.
    17. Efrosyni Kanellou & Nicos Spyropoulos & Nicolas Dalezios, 2012. "Geoinformatic Intelligence Methodologies for Drought Spatiotemporal Variability in Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1089-1106, March.
    18. Peng Qi & Y. Jun Xu & Guodong Wang, 2020. "Quantifying the Individual Contributions of Climate Change, Dam Construction, and Land Use/Land Cover Change to Hydrological Drought in a Marshy River," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    19. Nicolas R. Dalezios & Nicholas Dercas & Nicos V. Spyropoulos & Emmanouil Psomiadis, 2019. "Remotely Sensed Methodologies for Crop Water Availability and Requirements in Precision Farming of Vulnerable Agriculture," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1499-1519, March.
    20. Enes Gul & Efthymia Staiou & Mir Jafar Sadegh Safari & Babak Vaheddoost, 2023. "Enhancing Meteorological Drought Modeling Accuracy Using Hybrid Boost Regression Models: A Case Study from the Aegean Region, Türkiye," Sustainability, MDPI, vol. 15(15), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:2:d:10.1007_s11069-024-06906-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.