IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v85y2017i1d10.1007_s11069-016-2567-7.html
   My bibliography  Save this article

Assessing building vulnerability to tsunami using the PTVA-3 model: A case study of Chabahar Bay, Iran

Author

Listed:
  • Shima Madani

    (Iranian National Institute for Oceanography and Atmospheric Science)

  • Saeedeh Khaleghi

    (Iranian National Institute for Oceanography and Atmospheric Science)

  • Mahmood Reza Akbarpour Jannat

    (Iranian National Institute for Oceanography and Atmospheric Science)

Abstract

Chabahar Bay, in southeastern Iran, lies at the north of the Gulf of Oman and close to the Makran Subduction Zone, which makes it a region that is susceptible to tsunamis. This bay has an increasingly important role in Iran’s international trade, and therefore the assessment of the regional vulnerability to the effects of a tsunami is vital. Based on both the details of historical events and the results of numerical modeling of the propagation pattern of a tsunami in this region, this study assessed the vulnerability of buildings within the Chabahar Bay region to a tsunami event. The Papathoma Tsunami Vulnerability Assessment (PTVA) model was used to calculate a relative vulnerability index (RVI) for the affected buildings based on their physical and structural characteristics. The results showed that in a postulated worst-case-scenario tsunami event in the Chabahar Bay area, approximately 60 % of the residential buildings would be affected, a level of damage that is categorized as “Average” in the RVI classification. Overall, the economic losses related to the damage of residential buildings due to a tsunami in the Chabahar Bay area are anticipated to be the equivalent of US$ 16.5 million.

Suggested Citation

  • Shima Madani & Saeedeh Khaleghi & Mahmood Reza Akbarpour Jannat, 2017. "Assessing building vulnerability to tsunami using the PTVA-3 model: A case study of Chabahar Bay, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 349-359, January.
  • Handle: RePEc:spr:nathaz:v:85:y:2017:i:1:d:10.1007_s11069-016-2567-7
    DOI: 10.1007/s11069-016-2567-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2567-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2567-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dale Dominey-Howes & Paula Dunbar & Jesse Varner & Maria Papathoma-Köhle, 2010. "Estimating probable maximum loss from a Cascadia tsunami," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(1), pages 43-61, April.
    2. Mohammad Heidarzadeh & Moharram Pirooz & Nasser Zaker & Ahmet Yalciner, 2009. "Preliminary estimation of the tsunami hazards associated with the Makran subduction zone at the northwestern Indian Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 229-243, February.
    3. A. Payande & M. Niksokhan & H. Naserian, 2015. "Tsunami hazard assessment of Chabahar bay related to megathrust seismogenic potential of the Makran subduction zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 161-176, March.
    4. Deanne Bird & Dale Dominey-Howes, 2008. "Testing the use of a ‘questionnaire survey instrument’ to investigate public perceptions of tsunami hazard and risk in Sydney, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(1), pages 99-122, April.
    5. Dale Dominey-Howes & Phil Cummins & David Burbidge, 2007. "Historic records of teletsunami in the Indian Ocean and insights from numerical modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(1), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Majid Pourkerman & Nick Marriner & Mohammad-Ali Hamzeh & Hamid Lahijani & Christophe Morhange & Sedigheh Amjadi & Matteo Vacchi & Mehran Maghsoudi & Majid Shah-Hosseini & Mohammad Afarin, 2022. "Socioeconomic impacts of environmental risks in the western Makran zone (Chabahar, Iran)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1823-1849, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Heidarzadeh & Andrzej Kijko, 2011. "A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 577-593, March.
    2. Duygu Tufekci & Mehmet Lutfi Suzen & Ahmet Cevdet Yalciner & Andrey Zaytsev, 2018. "Revised MeTHuVA method for assessment of tsunami human vulnerability of Bakirkoy district, Istanbul," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 943-974, January.
    3. Anawat Suppasri & Erick Mas & Ingrid Charvet & Rashmin Gunasekera & Kentaro Imai & Yo Fukutani & Yoshi Abe & Fumihiko Imamura, 2013. "Building damage characteristics based on surveyed data and fragility curves of the 2011 Great East Japan tsunami," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 319-341, March.
    4. Dane Wiebe & Daniel Cox, 2014. "Application of fragility curves to estimate building damage and economic loss at a community scale: a case study of Seaside, Oregon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 2043-2061, April.
    5. Mohammad Mokhtari & Iraj Abdollahie Fard & Khaled Hessami, 2008. "Structural elements of the Makran region, Oman sea and their potential relevance to tsunamigenisis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(2), pages 185-199, November.
    6. Panon Latcharote & Khaled Al-Salem & Anawat Suppasri & Tanuspong Pokavanich & Shinji Toda & Yogeesha Jayaramu & Abdullah Al-Enezi & Alanoud Al-Ragum & Fumihiko Imamura, 2018. "Tsunami hazard evaluation for Kuwait and Arabian Gulf due to Makran Subduction Zone and Subaerial landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 127-152, September.
    7. G. Hoffmann & K. Reicherter & T. Wiatr & C. Grützner & T. Rausch, 2013. "Block and boulder accumulations along the coastline between Fins and Sur (Sultanate of Oman): tsunamigenic remains?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 851-873, January.
    8. Teresa Vera San Martín & Gary Rodriguez Rosado & Patricia Arreaga Vargas & Leonardo Gutierrez, 2018. "Population and building vulnerability assessment by possible worst-case tsunami scenarios in Salinas, Ecuador," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 275-297, August.
    9. Amanullah Mengal & Katsuichiro Goda & Muhammad Ashraf & Ghulam Murtaza, 2021. "Social vulnerability to seismic-tsunami hazards in district Gwadar, Balochistan, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1159-1181, August.
    10. Aaron Opdyke & Desmond Chiang & Anthony Tsang & Jacob Smyth, 2022. "Benchmarking household storm surge risk perceptions to scientific models in the Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1285-1305, November.
    11. Rittichainuwat, Bongkosh N., 2013. "Tourists' and tourism suppliers' perceptions toward crisis management on tsunami," Tourism Management, Elsevier, vol. 34(C), pages 112-121.
    12. Edris Alam & Dale Dominey-Howes, 2016. "A catalogue of earthquakes between 810BC and 2012 for the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 2031-2102, April.
    13. Ehsan Rastgoftar & Mohsen Soltanpour, 2016. "Study and numerical modeling of 1945 Makran tsunami due to a probable submarine landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 929-945, September.
    14. Carmen-Paz Castro & Juan-Pablo Sarmiento & Rosita Edwards & Gabriela Hoberman & Katherine Wyndham, 2017. "Disaster risk perception in urban contexts and for people with disabilities: case study on the city of Iquique (Chile)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 411-436, March.
    15. Onur Onat & Burak Yön & Mehmet Emin Öncü & Sadık Varolgüneş & Abdulhalim Karaşin & Selim Cemalgil, 2022. "Field reconnaissance and structural assessment of the October 30, 2020, Samos, Aegean Sea earthquake: an example of severe damage due to the basin effect," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 75-117, May.
    16. Chih-peng Wang & Ban-jwu Shih & Min-cheng Tu, 2022. "Study on the improvement of disaster resistance against tsunamis at Taiwan’s Keelung Port," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1507-1526, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:85:y:2017:i:1:d:10.1007_s11069-016-2567-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.