IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v65y2013i1p851-873.html
   My bibliography  Save this article

Block and boulder accumulations along the coastline between Fins and Sur (Sultanate of Oman): tsunamigenic remains?

Author

Listed:
  • G. Hoffmann
  • K. Reicherter
  • T. Wiatr
  • C. Grützner
  • T. Rausch

Abstract

The rocky coastline of the Sultanate of Oman between Fins and Sur is decorated by a number of large blocks and boulder accumulations forming ramparts. The blocks occur as individual rocks of up to 40 tons, as imbricated sets and as “boulder trains.” Landward, the deposits change into a sand/boulder mixture and distal into sands. The coast is made up of Tertiary folded limestones and beach rock of Quaternary age, both also constitute the megaclasts. The transport distance from the fractured seaward platform of 6–10 m above mean sea level varies between 20 m and more than 50 m. We found individual blocks of recent corals and overturned blocks with attached oysters and rock pools. Terrestrial laser scanning was used to analyze geomorphologic features as well as for volumetric estimates of the block weights. Tropical cyclones such as Gonu in 2007 or Phet in 2010 are known to have affected Oman’s coastline in the past. The coastal changes during recent cyclones were minor; therefore, we interpret the block deposits as tsunamigenic. However, this interpretation is not unambiguous. The most likely source area for a tsunami is seen in the Makran Subduction Zone situated in the northern Indian Ocean. Here, at least 4–5 tsunamigenic earthquakes are documented. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • G. Hoffmann & K. Reicherter & T. Wiatr & C. Grützner & T. Rausch, 2013. "Block and boulder accumulations along the coastline between Fins and Sur (Sultanate of Oman): tsunamigenic remains?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 851-873, January.
  • Handle: RePEc:spr:nathaz:v:65:y:2013:i:1:p:851-873
    DOI: 10.1007/s11069-012-0399-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0399-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0399-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Neetu & I. Suresh & R. Shankar & B. Nagarajan & R. Sharma & S. Shenoi & A. Unnikrishnan & D. Sundar, 2011. "Trapped waves of the 27 November 1945 Makran tsunami: observations and numerical modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1609-1618, December.
    2. Mohammad Heidarzadeh & Andrzej Kijko, 2011. "A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 577-593, March.
    3. Mohammad Heidarzadeh & Moharram Pirooz & Nasser Zaker & Ahmet Yalciner, 2009. "Preliminary estimation of the tsunami hazards associated with the Makran subduction zone at the northwestern Indian Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 229-243, February.
    4. Mohammad Mokhtari & Iraj Abdollahie Fard & Khaled Hessami, 2008. "Structural elements of the Makran region, Oman sea and their potential relevance to tsunamigenisis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(2), pages 185-199, November.
    5. R. Jaiswal & A. Singh & B. Rastogi, 2009. "Simulation of the Arabian Sea Tsunami propagation generated due to 1945 Makran Earthquake and its effect on western parts of Gujarat (India)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 245-258, February.
    6. Max Wyss & Azm Al-Homoud, 2004. "Scenarios of Seismic Risk in the United Arab Emirates, an Approximate Estimate," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 32(3), pages 375-393, July.
    7. Kruawun Jankaew & Brian F. Atwater & Yuki Sawai & Montri Choowong & Thasinee Charoentitirat & Maria E. Martin & Amy Prendergast, 2008. "Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand," Nature, Nature, vol. 455(7217), pages 1228-1231, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamid Zafarani & Leila Etemadsaeed & Mohammad Rahimi & Navid Kheirdast & Amin Rashidi & Anooshiravan Ansari & Mohammad Mokhtari & Morteza Eskandari-Ghadi, 2023. "Probabilistic tsunami hazard analysis for western Makran coasts, south-east Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1275-1311, January.
    2. C. Rajendran & Kusala Rajendran & Majid Shah-hosseini & Abdolmajid Beni & C. Nautiyal & Ronia Andrews, 2013. "The hazard potential of the western segment of the Makran subduction zone, northern Arabian Sea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 219-239, January.
    3. Amanullah Mengal & Katsuichiro Goda & Muhammad Ashraf & Ghulam Murtaza, 2021. "Social vulnerability to seismic-tsunami hazards in district Gwadar, Balochistan, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1159-1181, August.
    4. Ehsan Rastgoftar & Mohsen Soltanpour, 2016. "Study and numerical modeling of 1945 Makran tsunami due to a probable submarine landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 929-945, September.
    5. P. Subraelu & Abdel Azim Ebraheem & Mohsen Sherif & Ahmed Sefelnasr & M. M. Yagoub & Kakani Nageswara Rao, 2022. "Land in Water: The Study of Land Reclamation and Artificial Islands Formation in the UAE Coastal Zone: A Remote Sensing and GIS Perspective," Land, MDPI, vol. 11(11), pages 1-28, November.
    6. Nikita Jain & Deepali Virmani & Ajith Abraham, 2021. "Tsunami in the last 15 years: a bibliometric analysis with a detailed overview and future directions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 139-172, March.
    7. Mohammad Heidarzadeh & Andrzej Kijko, 2011. "A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 577-593, March.
    8. Supawit Yawsangratt & Witold Szczuciński & Niran Chaimanee & Sirapapa Chatprasert & Wojciech Majewski & Stanisław Lorenc, 2012. "Evidence of probable paleotsunami deposits on Kho Khao Island, Phang Nga Province, Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(1), pages 151-163, August.
    9. Panon Latcharote & Khaled Al-Salem & Anawat Suppasri & Tanuspong Pokavanich & Shinji Toda & Yogeesha Jayaramu & Abdullah Al-Enezi & Alanoud Al-Ragum & Fumihiko Imamura, 2018. "Tsunami hazard evaluation for Kuwait and Arabian Gulf due to Makran Subduction Zone and Subaerial landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 127-152, September.
    10. Kapila Dahanayake & Nayomi Kulasena & G. Ravi Prasad & Koushik Dutta & D. Ray, 2012. "Sedimentological and 14 C dating studies of past tsunami events in Southern Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(1), pages 197-209, August.
    11. S. Prizomwala & Drasti Gandhi & Vishal Ukey & Nilesh Bhatt & B. Rastogi, 2015. "Coastal boulders as evidences of high-energy marine events from Diu Island, west coast of India: storm or palaeotsunami?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1187-1203, January.
    12. Tetsuya Shinozaki & Yuki Sawai & Kazumi Ito & Junko Hara & Dan Matsumoto & Koichiro Tanigawa & Jessica E. Pilarczyk, 2020. "Recent and historical tsunami deposits from Lake Tokotan, eastern Hokkaido, Japan, inferred from nondestructive, grain size, and radioactive cesium analyses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 713-730, August.
    13. Firyal Bou-Rabee & Yin Lu Young & Emile A. Okal, 2020. "Evidence of prehistoric liquefaction in Kuwait and implications for the seismic vulnerability of the Arabian Gulf Countries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 799-813, August.
    14. D. Meshram & S. Sangode & A. Gujar & N. Ambre & D. Dhongle & S. Porate, 2011. "Occurrence of soft sediment deformation at Dive Agar beach, west coast of India: possible record of the Indian Ocean tsunami (2004)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 385-393, May.
    15. Edris Alam & Dale Dominey-Howes, 2016. "A catalogue of earthquakes between 810BC and 2012 for the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 2031-2102, April.
    16. A. D. Roshan & Prabir C. Basu & R. S. Jangid, 2016. "Tsunami hazard assessment of Indian coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 733-762, June.
    17. Nilesh Bhatt & Madhav K. Murari & Vishal Ukey & S. P. Prizomwala & A. K. Singhvi, 2016. "Geological evidences of extreme waves along the Gujarat coast of western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1685-1704, December.
    18. Hyoungsu Park & Daniel T. Cox & Andre R. Barbosa, 2018. "Probabilistic Tsunami Hazard Assessment (PTHA) for resilience assessment of a coastal community," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1117-1139, December.
    19. Amin Rashidi & Zaher Hossein Shomali & Denys Dutykh & Nasser Keshavarz Farajkhah, 2020. "Tsunami hazard assessment in the Makran subduction zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 861-875, January.
    20. Joaquin Rodriguez-Vidal & Jose Rodriguez-Llanes & Debarati Guha-Sapir, 2012. "Civil nuclear power at risk of tsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 1273-1278, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:65:y:2013:i:1:p:851-873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.