IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v82y2016i2d10.1007_s11069-016-2216-1.html
   My bibliography  Save this article

Tsunami hazard assessment of Indian coast

Author

Listed:
  • A. D. Roshan

    (IIT Bombay
    Atomic Energy Regulatory Board)

  • Prabir C. Basu

    (AERB)

  • R. S. Jangid

    (Indian Institute of Technology Bombay)

Abstract

The tsunami caused by the magnitude 9.1 Andaman–Sumatra earthquake in 2004 brought into limelight the vulnerability of Indian coast against the flooding hazard due to this natural phenomenon. The paper brings out the work carried out in relation to assessment of tsunami hazard along the Indian coast following a deterministic approach based on the method suggested by Japan Society of Civil Engineers. The tsunamigenic source zones around Indian coast are identified, and maximum tsunamigenic earthquake magnitude from each source zone, viz. Burma–Andaman–Sumatra, Makran and zone of diffused seismicity, is estimated. Several scenario earthquakes are postulated from each zone accounting for uncertainties in fault strike and dip. Tsunami hazard from these zones to Indian coast is estimated based on validated numerical tools at a grid spacing of 300 m, and hazard is presented in the form of maps. Important phenomena such as wave amplification in shallow waters and wave runup are captured in the analysis. The water levels are represented in terms of mean estimates and associated standard deviations in estimates reflecting uncertainty in evaluated levels. The assessment indicates higher vulnerability of the east coast and the southwestern coast of India as well as existence of several tsunami hot spots (regions with unusually high wave amplitude) along the Indian coast. In addition to increased understanding of tsunami vulnerability of Indian coast, the tsunami hazard maps presented in the paper will be useful during planning and engineering of coastal structures and infrastructure in selection of their safe grade elevations. The work presented here can be further enhanced by addressing uncertainties in maximum earthquake magnitudes, related rupture parameters and with better shallow water and coastal topography data.

Suggested Citation

  • A. D. Roshan & Prabir C. Basu & R. S. Jangid, 2016. "Tsunami hazard assessment of Indian coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 733-762, June.
  • Handle: RePEc:spr:nathaz:v:82:y:2016:i:2:d:10.1007_s11069-016-2216-1
    DOI: 10.1007/s11069-016-2216-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2216-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2216-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Neetu & I. Suresh & R. Shankar & B. Nagarajan & R. Sharma & S. Shenoi & A. Unnikrishnan & D. Sundar, 2011. "Trapped waves of the 27 November 1945 Makran tsunami: observations and numerical modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1609-1618, December.
    2. David Burbidge & Phil Cummins, 2007. "Assessing the threat to Western Australia from tsunami generated by earthquakes along the Sunda Arc," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(3), pages 319-331, December.
    3. G. Gopinath & F. Løvholt & G. Kaiser & C. Harbitz & K. Srinivasa Raju & M. Ramalingam & Bhoop Singh, 2014. "Impact of the 2004 Indian Ocean tsunami along the Tamil Nadu coastline: field survey review and numerical simulations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 743-769, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Dhanya & S. T. G. Raghukanth, 2020. "Implication of source models on tsunami wave simulations for 2004 (Mw 9.2) Sumatra earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 279-304, October.
    2. Swathi Priyadarsini Putti & Neelima Satyam Devarakonda & Ikuo Towhata, 2019. "Estimation of ground response and local site effects for Vishakhapatnam, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 555-578, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Hoffmann & K. Reicherter & T. Wiatr & C. Grützner & T. Rausch, 2013. "Block and boulder accumulations along the coastline between Fins and Sur (Sultanate of Oman): tsunamigenic remains?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 851-873, January.
    2. C. Rajendran & Kusala Rajendran & Majid Shah-hosseini & Abdolmajid Beni & C. Nautiyal & Ronia Andrews, 2013. "The hazard potential of the western segment of the Makran subduction zone, northern Arabian Sea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 219-239, January.
    3. S. Prizomwala & Drasti Gandhi & Vishal Ukey & Nilesh Bhatt & B. Rastogi, 2015. "Coastal boulders as evidences of high-energy marine events from Diu Island, west coast of India: storm or palaeotsunami?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1187-1203, January.
    4. Hamid Zafarani & Leila Etemadsaeed & Mohammad Rahimi & Navid Kheirdast & Amin Rashidi & Anooshiravan Ansari & Mohammad Mokhtari & Morteza Eskandari-Ghadi, 2023. "Probabilistic tsunami hazard analysis for western Makran coasts, south-east Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1275-1311, January.
    5. Ehsan Rastgoftar & Mohsen Soltanpour, 2016. "Study and numerical modeling of 1945 Makran tsunami due to a probable submarine landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 929-945, September.
    6. M. Iyyappan & Tune Usha & S. S. Ramakrishnan & K. Srinivasa Raju & G. Gopinath & S. Chenthamil Selvan & S. K. Dash & P. Mishra, 2018. "Evaluation of tsunami inundation using synthetic aperture radar (SAR) data and numerical modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1419-1432, July.
    7. A. Prendergast & N. Brown, 2012. "Far-field impact and coastal sedimentation associated with the 2006 Java tsunami in West Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(1), pages 69-79, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:82:y:2016:i:2:d:10.1007_s11069-016-2216-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.