IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v72y2014i2p503-532.html
   My bibliography  Save this article

DISASTER: a GIS database on hydro-geomorphologic disasters in Portugal

Author

Listed:
  • J. Zêzere
  • S. Pereira
  • A. Tavares
  • C. Bateira
  • R. Trigo
  • I. Quaresma
  • P. Santos
  • M. Santos
  • J. Verde

Abstract

In the last century, Portugal was affected by several natural disasters of hydro-geomorphologic origin that often caused high levels of destruction. However, data on past events related to floods and landslides were scattered. The Disaster project aims to bridge the gap on the availability of a consistent and validated hydro-geomorphologic database for Portugal, by creating, disseminating and exploiting a GIS database on disastrous floods and landslides for the period 1865–2010, which is available in http://riskam.ul.pt/disaster/en . Data collection is steered by the concept of disaster used within the Disaster project. Therefore, any hydro-geomorphologic case is stored in the database if the occurrence led to casualties or injuries, and missing, evacuated or homeless people, independently of the number of people affected. The sources of information are 16 national, regional and local newspapers that implied the analysis of 145,344 individual newspapers. The hydro-geomorphologic occurrences were stored in a database containing two major parts: the characteristics of the hydro-geomorphologic case and the corresponding damages. In this work, the main results of the Disaster database are presented. A total of 1,621 disastrous floods and 281 disastrous landslides were recorded and registered in the database. These occurrences were responsible for 1,251 dead people. The obtained results do not support the existence of any exponential increase in events in time, thus contrasting with the picture provided to Portugal by the Emergency Events Database. Floods were more frequent during the period 1936–1967 and occurred mostly from November to February. Landslides were more frequent in the period 1947–1969 and occurred mostly from December to March. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • J. Zêzere & S. Pereira & A. Tavares & C. Bateira & R. Trigo & I. Quaresma & P. Santos & M. Santos & J. Verde, 2014. "DISASTER: a GIS database on hydro-geomorphologic disasters in Portugal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 503-532, June.
  • Handle: RePEc:spr:nathaz:v:72:y:2014:i:2:p:503-532
    DOI: 10.1007/s11069-013-1018-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-1018-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-1018-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Jonkman, 2005. "Global Perspectives on Loss of Human Life Caused by Floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 34(2), pages 151-175, February.
    2. Catarina Ramos & Eusébio Reis, 2002. "Floods in southern Portugal: their physical and human causes, impacts and human response," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(3), pages 267-284, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominik Paprotny & Michalis I. Vousdoukas & Oswaldo Morales-Nápoles & Sebastiaan N. Jonkman & Luc Feyen, 2020. "Pan-European hydrodynamic models and their ability to identify compound floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 933-957, April.
    2. José Leandro Barros & Alexandre Oliveira Tavares & Pedro Pinto Santos, 2021. "Land use and land cover dynamics in Leiria City: relation between peri-urbanization processes and hydro-geomorphologic disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 757-784, March.
    3. Pedro Pinto Santos & Alexandre Oliveira Tavares & Paula Freire & Ana Rilo, 2018. "Estuarine flooding in urban areas: enhancing vulnerability assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 77-95, September.
    4. Miguel Leal & Catarina Ramos & Susana Pereira, 2018. "Different types of flooding lead to different human and material damages: the case of the Lisbon Metropolitan Area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 735-758, March.
    5. Luís Filipe Lopes & Sérgio Cruz Oliveira & Carlos Neto & José Luís Zêzere, 2020. "Vegetation evolution by ecological succession as a potential bioindicator of landslides relative age in Southwestern Mediterranean region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 599-622, August.
    6. T. Vaz & J. L. Zêzere, 2016. "Landslides and other geomorphologic and hydrologic effects induced by earthquakes in Portugal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 71-98, March.
    7. T. Vaz & J. Zêzere, 2016. "Landslides and other geomorphologic and hydrologic effects induced by earthquakes in Portugal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 71-98, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davor Kvočka & Roger A. Falconer & Michaela Bray, 2016. "Flood hazard assessment for extreme flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1569-1599, December.
    2. Rebecca E. Morss & Julie L. Demuth & Ann Bostrom & Jeffrey K. Lazo & Heather Lazrus, 2015. "Flash Flood Risks and Warning Decisions: A Mental Models Study of Forecasters, Public Officials, and Media Broadcasters in Boulder, Colorado," Risk Analysis, John Wiley & Sons, vol. 35(11), pages 2009-2028, November.
    3. Sivadasan, Jagadeesh & Xu, Wenjian, 2021. "Missing women in India: Gender-specific effects of early-life rainfall shocks," World Development, Elsevier, vol. 148(C).
    4. María Isabel Arango & Edier Aristizábal & Federico Gómez, 2021. "Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 983-1012, January.
    5. Francesco Serinaldi & Florian Loecker & Chris G. Kilsby & Hubert Bast, 2018. "Flood propagation and duration in large river basins: a data-driven analysis for reinsurance purposes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 71-92, October.
    6. Derly Gómez & Edwin F. García & Edier Aristizábal, 2023. "Spatial and temporal landslide distributions using global and open landslide databases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 25-55, May.
    7. Ibidun Adelekan & Adeniyi Asiyanbi, 2016. "Flood risk perception in flood-affected communities in Lagos, Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 445-469, January.
    8. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    9. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.
    10. Morteza T. Marvi, 2020. "A review of flood damage analysis for a building structure and contents," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 967-995, July.
    11. S. Mosquera-Machado & Sajjad Ahmad, 2007. "Flood hazard assessment of Atrato River in Colombia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 591-609, March.
    12. Dilshad Ahmad & Mohammad Afzal & Abdur Rauf, 2021. "Farmers’ adaptation decisions to landslides and flash floods in the mountainous region of Khyber Pakhtunkhwa of Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8573-8600, June.
    13. José Barredo, 2007. "Major flood disasters in Europe: 1950–2005," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(1), pages 125-148, July.
    14. Guozhen Wei & Wei Ding & Guohua Liang & Bin He & Jian Wu & Rui Zhang & Huicheng Zhou, 2022. "A New Framework Based on Data-Based Mechanistic Model and Forgetting Mechanism for Flood Forecast," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3591-3607, August.
    15. Helen Boon, 2014. "Disaster resilience in a flood-impacted rural Australian town," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 683-701, March.
    16. Guleid Artan & Hussein Gadain & Jodie Smith & Kwabena Asante & Christina Bandaragoda & James Verdin, 2007. "Adequacy of satellite derived rainfall data for stream flow modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(2), pages 167-185, November.
    17. Insa Thiele-Eich & Katrin Burkart & Clemens Simmer, 2015. "Trends in Water Level and Flooding in Dhaka, Bangladesh and Their Impact on Mortality," IJERPH, MDPI, vol. 12(2), pages 1-20, January.
    18. Weixiao Han & Chen Liang & Baofa Jiang & Wei Ma & Ying Zhang, 2016. "Major Natural Disasters in China, 1985–2014: Occurrence and Damages," IJERPH, MDPI, vol. 13(11), pages 1-14, November.
    19. Alaa Ahmed & Abdullah Alrajhi & Abdulaziz Alquwaizany & Ali Al Maliki & Guna Hewa, 2022. "Flood Susceptibility Mapping Using Watershed Geomorphic Data in the Onkaparinga Basin, South Australia," Sustainability, MDPI, vol. 14(23), pages 1-23, December.
    20. Chris Eves & Sara Wilkinson, 2014. "Assessing the immediate and short-term impact of flooding on residential property participant behaviour," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1519-1536, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:72:y:2014:i:2:p:503-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.