IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v70y2014i2p1437-1451.html
   My bibliography  Save this article

Up-scaling of impact dependent loss distributions: a hybrid convolution approach for flood risk in Europe

Author

Listed:
  • S. Hochrainer-Stigler
  • N. Lugeri
  • M. Radziejewski

Abstract

This paper introduces a new method to up-scale dependent loss distributions from natural hazards to higher spatial levels, explicitly incorporating their dependency structure over the aggregation process. The method is applied for flood risk in Europe. Based on this “hybrid convolution” approach, flood loss distributions for nearly all European countries are calculated and presented. Such risk-based estimates of extreme event losses are useful for determining suitable risk management strategies on various spatial levels for different risk bearers. The method is not only applicable for natural disaster risk but can be extended for other cases as well, i.e., where comonotonic risks have to be “summed up” without loss of risk information. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • S. Hochrainer-Stigler & N. Lugeri & M. Radziejewski, 2014. "Up-scaling of impact dependent loss distributions: a hybrid convolution approach for flood risk in Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1437-1451, January.
  • Handle: RePEc:spr:nathaz:v:70:y:2014:i:2:p:1437-1451
    DOI: 10.1007/s11069-013-0885-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0885-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0885-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elyès Jouini & Clotilde Napp, 2004. "Conditional comonotonicity," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 27(2), pages 153-166, December.
    2. Stefan Hochrainer & Joanne Linnerooth-Bayer & Reinhard Mechler, 2010. "The European Union Solidarity Fund," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 797-810, October.
    3. Luc Feyen & Rutger Dankers & Katalin Bódis & Peter Salamon & José Barredo, 2012. "Fluvial flood risk in Europe in present and future climates," Climatic Change, Springer, vol. 112(1), pages 47-62, May.
    4. Jim Hall & Paul Sayers & Richard Dawson, 2005. "National-scale Assessment of Current and Future Flood Risk in England and Wales," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 36(1), pages 147-164, September.
    5. Neufeldt,Henry, 2009. "Making Climate Change Work for Us," Cambridge Books, Cambridge University Press, number 9780521119412 edited by Hulme,Mike.
    6. Wen-Ko Hsu & Pei-Chiung Huang & Ching-Cheng Chang & Cheng-Wu Chen & Dung-Moung Hung & Wei-Ling Chiang, 2011. "An integrated flood risk assessment model for property insurance industry in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1295-1309, September.
    7. Harvey Rodda, 2005. "The Development and Application of a Flood Risk Model for the Czech Republic," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 36(1), pages 207-220, September.
    8. repec:dau:papers:123456789/344 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Li & Wei Gu & Weijia Cui & Zhiyun Chang & Yingjun Xu, 2015. "Exploration of copula function use in crop meteorological drought risk analysis: a case study of winter wheat in Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1289-1303, June.
    2. Thomas Schinko & Reinhard Mechler & Stefan Hochrainer-Stigler, 2017. "A methodological framework to operationalize climate risk management: managing sovereign climate-related extreme event risk in Austria," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(7), pages 1063-1086, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Moel & B. Jongman & H. Kreibich & B. Merz & E. Penning-Rowsell & P. Ward, 2015. "Flood risk assessments at different spatial scales," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 865-890, August.
    2. Ralf Merz & Günter Blöschl & Günter Humer, 2008. "National flood discharge mapping in Austria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(1), pages 53-72, July.
    3. Katie Jenkins & Jim Hall & Vassilis Glenis & Chris Kilsby, 2018. "A Probabilistic Analysis of Surface Water Flood Risk in London," Risk Analysis, John Wiley & Sons, vol. 38(6), pages 1169-1182, June.
    4. Anna Timonina & Stefan Hochrainer‐Stigler & Georg Pflug & Brenden Jongman & Rodrigo Rojas, 2015. "Structured Coupling of Probability Loss Distributions: Assessing Joint Flood Risk in Multiple River Basins," Risk Analysis, John Wiley & Sons, vol. 35(11), pages 2102-2119, November.
    5. Shanshan Hu & Xiangjun Cheng & Demin Zhou & Hong Zhang, 2017. "GIS-based flood risk assessment in suburban areas: a case study of the Fangshan District, Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1525-1543, July.
    6. Giuliano Di Baldassarre & Attilio Castellarin & Alberto Montanari & Armando Brath, 2009. "Probability-weighted hazard maps for comparing different flood risk management strategies: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(3), pages 479-496, September.
    7. Wen-Ko Hsu & Wei-Ling Chiang & Qiang Xue & Dung-Mou Hung & Pei-Chun Huang & Cheng-Wu Chen & Chung-Hung Tsai, 2013. "A probabilistic approach for earthquake risk assessment based on an engineering insurance portfolio," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1559-1571, February.
    8. Dapeng Huang & Renhe Zhang & Zhiguo Huo & Fei Mao & Youhao E & Wei Zheng, 2012. "An assessment of multidimensional flood vulnerability at the provincial scale in China based on the DEA method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1575-1586, November.
    9. Badri Bhakta Shrestha & Edangodage Duminda Pradeep Perera & Shun Kudo & Mamoru Miyamoto & Yusuke Yamazaki & Daisuke Kuribayashi & Hisaya Sawano & Takahiro Sayama & Jun Magome & Akira Hasegawa & Tomoki, 2019. "Assessing flood disaster impacts in agriculture under climate change in the river basins of Southeast Asia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 157-192, May.
    10. Gianina Cojoc & Gheorghe Romanescu & Alina Tirnovan, 2015. "Exceptional floods on a developed river: case study for the Bistrita River from the Eastern Carpathians (Romania)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1421-1451, July.
    11. C. Chen & T. Chen & Y. Chen & S. Yu & P. Chung, 2013. "Storm surge prediction with management information systems: A case study of estimating value and observations system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1009-1027, March.
    12. Thomas D. Pol & Ekko C. Ierland & Silke Gabbert, 2017. "Economic analysis of adaptive strategies for flood risk management under climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(2), pages 267-285, February.
    13. Guillaume Carlier & Rose-Anne Dana & Alfred Galichon, 2012. "Pareto efficiency for the concave order and multivariate comonotonicity," SciencePo Working papers Main hal-01053549, HAL.
    14. Chao-Yuan Lin & Yuan-Chung Lai & Shao-Wei Wu & Fan-Chung Mo & Cheng-Yu Lin, 2022. "Assessment of potential sediment disasters and resilience management of mountain roads using environmental indicators," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1951-1975, March.
    15. Graham, Bryan S. & Hahn, Jinyong & Poirier, Alexandre & Powell, James L., 2018. "A quantile correlated random coefficients panel data model," Journal of Econometrics, Elsevier, vol. 206(2), pages 305-335.
    16. K. M. Bruijn & N. Lips & B. Gersonius & H. Middelkoop, 2016. "The storyline approach: a new way to analyse and improve flood event management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 99-121, March.
    17. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc0p00hch is not listed on IDEAS
    18. Xi Hu & Jim W. Hall & Peijun Shi & Wee Ho Lim, 2016. "The spatial exposure of the Chinese infrastructure system to flooding and drought hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1083-1118, January.
    19. Chun-Pin Tseng & Cheng-Wu Chen, 2012. "Natural disaster management mechanisms for probabilistic earthquake loss," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1055-1063, February.
    20. Eduardo Cavallo & Ilan Noy, 2009. "The Economics of Natural Disasters: A Survey," Research Department Publications 4649, Inter-American Development Bank, Research Department.
    21. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc0p00hch is not listed on IDEAS
    22. Sauer, Johannes & Finger, Robert, 2014. "Climate Risk Management Strategies in Agriculture – The Case of Flood Risk," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 172679, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:70:y:2014:i:2:p:1437-1451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.