IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i9p1760-d1737665.html
   My bibliography  Save this article

Towards a Robust Framework for Navigating Flood-Related Challenges: A Comprehensive Proposal for an Advanced Flood Risk Assessment Scale in the Slovak Republic

Author

Listed:
  • Marcela Bindzarova Gergelova

    (Institute of Geodesy, Cartography and Geographical Information Systems, Faculty of Mining, Ecology, Process Control and Geotechnology, Technical University of Kosice, 04200 Kosice, Slovakia)

  • Martina Zelenakova

    (Institute for Sustainable and Circular Construction, Faculty of Civil Engineering, Technical University of Kosice, 04200 Kosice, Slovakia)

  • Maria Hlinkova

    (Institute for Sustainable and Circular Construction, Faculty of Civil Engineering, Technical University of Kosice, 04200 Kosice, Slovakia)

  • Hany F. Abd-Elhamid

    (Department of Water and Water Structures Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
    Department of Environmental Engineering, Faculty of Engineering, Technical University of Kosice, 04200 Kosice, Slovakia)

Abstract

This study presents a new multi-index hierarchical model for flood risk assessment which incorporates three indicator indexes—hazard, vulnerability, and exposure—to develop a five-level risk scale. The methodology is applied to historical data on flood events in The Slovak Republic between 2001 and 2010. The input values are characterized in more detail through the use of weighted values to provide a more balanced overall risk assessment. The original formula used to calculate the risk levels was found to produce results with overly high numerical values, and therefore the multiplication step of the formula was replaced by addition to insure greater simplicity and ease of use. This refined methodology introduces a novel quantitative approach to risk assessment, offering flexibility and variability in the indicator layer. The methodology can be adapted to assess risk at either the macro or micro scale and at more specific periods of time. The resulting risk values offer a nuanced understanding of risk levels across different indexes and underscores the method’s innovation.

Suggested Citation

  • Marcela Bindzarova Gergelova & Martina Zelenakova & Maria Hlinkova & Hany F. Abd-Elhamid, 2025. "Towards a Robust Framework for Navigating Flood-Related Challenges: A Comprehensive Proposal for an Advanced Flood Risk Assessment Scale in the Slovak Republic," Land, MDPI, vol. 14(9), pages 1-20, August.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:9:p:1760-:d:1737665
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/9/1760/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/9/1760/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jim Hall & Paul Sayers & Richard Dawson, 2005. "National-scale Assessment of Current and Future Flood Risk in England and Wales," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 36(1), pages 147-164, September.
    2. H. Moel & B. Jongman & H. Kreibich & B. Merz & E. Penning-Rowsell & P. Ward, 2015. "Flood risk assessments at different spatial scales," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 865-890, August.
    3. Daša Oremusová & Magdaléna Nemčíková & Alfred Krogmann, 2021. "Transformation of the Landscape in the Conditions of the Slovak Republic for Tourism," Land, MDPI, vol. 10(5), pages 1-23, April.
    4. Terje Aven & Enrico Zio, 2014. "Foundational Issues in Risk Assessment and Risk Management," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1164-1172, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junfei Chen & Liming Liu & Jinpeng Pei & Menghua Deng, 2021. "An ensemble risk assessment model for urban rainstorm disasters based on random forest and deep belief nets: a case study of Nanjing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2671-2692, July.
    2. Honghao Liu & ZhuoWei Hu & Ziqing Yang & Mi Wang, 2024. "Model-data matching method for natural disaster emergency service scenarios: implementation based on a knowledge graph and community discovery algorithm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(5), pages 4233-4255, March.
    3. Katie Jenkins & Jim Hall & Vassilis Glenis & Chris Kilsby, 2018. "A Probabilistic Analysis of Surface Water Flood Risk in London," Risk Analysis, John Wiley & Sons, vol. 38(6), pages 1169-1182, June.
    4. Giuliano Di Baldassarre & Attilio Castellarin & Alberto Montanari & Armando Brath, 2009. "Probability-weighted hazard maps for comparing different flood risk management strategies: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(3), pages 479-496, September.
    5. Dapeng Huang & Renhe Zhang & Zhiguo Huo & Fei Mao & Youhao E & Wei Zheng, 2012. "An assessment of multidimensional flood vulnerability at the provincial scale in China based on the DEA method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1575-1586, November.
    6. Hui Xu & Junlong Gao & Xinchun Yu & Qianqian Qin & Shiqiang Du & Jiahong Wen, 2024. "Assessment of Rainstorm Waterlogging Disaster Risk in Rapidly Urbanizing Areas Based on Land Use Scenario Simulation: A Case Study of Jiangqiao Town in Shanghai, China," Land, MDPI, vol. 13(7), pages 1-18, July.
    7. Sven Ove Hansson & Terje Aven, 2014. "Is Risk Analysis Scientific?," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1173-1183, July.
    8. Ralf Merz & Günter Blöschl & Günter Humer, 2008. "National flood discharge mapping in Austria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(1), pages 53-72, July.
    9. Thomas D. Pol & Ekko C. Ierland & Silke Gabbert, 2017. "Economic analysis of adaptive strategies for flood risk management under climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(2), pages 267-285, February.
    10. Daniela Sorea & Codrina Csesznek & Gabriela Georgeta Rățulea, 2022. "The Culture-Centered Development Potential of Communities in Făgăraș Land (Romania)," Land, MDPI, vol. 11(6), pages 1-32, June.
    11. Caridad Ballesteros & José A. Jiménez & Christophe Viavattene, 2018. "A multi-component flood risk assessment in the Maresme coast (NW Mediterranean)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 265-292, January.
    12. K. M. Bruijn & N. Lips & B. Gersonius & H. Middelkoop, 2016. "The storyline approach: a new way to analyse and improve flood event management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 99-121, March.
    13. Nguyen, Son & Chen, Peggy Shu-Ling & Du, Yuquan & Shi, Wenming, 2019. "A quantitative risk analysis model with integrated deliberative Delphi platform for container shipping operational risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 203-227.
    14. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    15. Xi Hu & Jim W. Hall & Peijun Shi & Wee Ho Lim, 2016. "The spatial exposure of the Chinese infrastructure system to flooding and drought hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1083-1118, January.
    16. Xu, Zixuan & Ma, Jinfeng & Zheng, Hua & Wang, Lijing & Ying, Lingxiao & Li, Ruonan & Yang, Yanzheng, 2024. "Quantification of the flood mitigation ecosystem service by coupling hydrological and hydrodynamic models," Ecosystem Services, Elsevier, vol. 68(C).
    17. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    18. Sauer, Johannes & Finger, Robert, 2014. "Climate Risk Management Strategies in Agriculture – The Case of Flood Risk," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 172679, Agricultural and Applied Economics Association.
    19. Zbigniew Kundzewicz & Nicola Lugeri & Rutger Dankers & Yukiko Hirabayashi & Petra Döll & Iwona Pińskwar & Tomasz Dysarz & Stefan Hochrainer & Piotr Matczak, 2010. "Assessing river flood risk and adaptation in Europe—review of projections for the future," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 641-656, October.
    20. Luca Allodi & Fabio Massacci, 2017. "Security Events and Vulnerability Data for Cybersecurity Risk Estimation," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1606-1627, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:9:p:1760-:d:1737665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.