IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v69y2013i3p2197-2214.html
   My bibliography  Save this article

Point-line-area-volume index system of land subsidence and application in Ningbo, China

Author

Listed:
  • Jianxiu Wang
  • Xueying Gu
  • Yukun Jiang
  • Tianrong Huang
  • Bo Feng

Abstract

Traditional land subsidence indices primarily describe the characteristics of land subsidence at a given site, but such indicators cannot satisfy the requirements for effective land management. We propose a new index system called the point-line-area-volume (PLAV) index system, designed to facilitate efficient description of the geometric characteristics of land subsidence. The system features four indices: the (1) point index system, which describes land subsidence at a site; (2) line index system, which depicts heterogeneous land subsidence between two sites; (3) area index system, which is an indicator of surface land subsidence; and (4) volume index system (VIS), which elucidates land subsidence in terms of soil volume loss. The analytic hierarchy process (AHP) indicates that VIS is the best index system among the four. Additionally, we introduce comprehensive index I, which describes the overall characteristics of land subsidence. The weights of the PLAV indices are calculated by the AHP method. The index system is used to determine the land subsidence characteristics of Ningbo, Zhejiang Province, China and to evaluate the potential hazards for the study site. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Jianxiu Wang & Xueying Gu & Yukun Jiang & Tianrong Huang & Bo Feng, 2013. "Point-line-area-volume index system of land subsidence and application in Ningbo, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 2197-2214, December.
  • Handle: RePEc:spr:nathaz:v:69:y:2013:i:3:p:2197-2214
    DOI: 10.1007/s11069-013-0801-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0801-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0801-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ye-Shuang Xu & Shui-Long Shen & Zheng-Yin Cai & Guo-Yun Zhou, 2008. "The state of land subsidence and prediction approaches due to groundwater withdrawal in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(1), pages 123-135, April.
    2. Francisco Gutiérrez & Jesús Guerrero & Pedro Lucha, 2008. "Quantitative sinkhole hazard assessment. A case study from the Ebro Valley evaporite alluvial karst (NE Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(2), pages 211-233, May.
    3. Ammar Amin & Khalid Bankher, 1997. "Causes of Land Subsidence in the Kingdom of Saudi Arabia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 16(1), pages 57-63, July.
    4. Hasanuddin Abidin & Rochman Djaja & Dudy Darmawan & Samsul Hadi & Arifin Akbar & H. Rajiyowiryono & Y. Sudibyo & I. Meilano & M. Kasuma & J. Kahar & Cecep Subarya, 2001. "Land Subsidence of Jakarta (Indonesia) and its Geodetic Monitoring System," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 23(2), pages 365-387, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beibei Hu & Jun Zhou & Shiyuan Xu & Zhenlou Chen & Jun Wang & Dongqi Wang & Lei Wang & Jifa Guo & Weiqing Meng, 2013. "Assessment of hazards and economic losses induced by land subsidence in Tianjin Binhai new area from 2011 to 2020 based on scenario analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 873-886, March.
    2. Huafeng Xu & Bin Liu & Zhigeng Fang, 2014. "New grey prediction model and its application in forecasting land subsidence in coal mine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1181-1194, March.
    3. Dayang Xuan & Jialin Xu, 2014. "Grout injection into bed separation to control surface subsidence during longwall mining under villages: case study of Liudian coal mine, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 883-906, September.
    4. Richa Bhattarai & Haireti Alifu & Aikebaier Maitiniyazi & Akihiko Kondoh, 2017. "Detection of Land Subsidence in Kathmandu Valley, Nepal, Using DInSAR Technique," Land, MDPI, vol. 6(2), pages 1-17, June.
    5. Hasanuddin Abidin & Heri Andreas & Irwan Gumilar & Yoichi Fukuda & Yusuf Pohan & T. Deguchi, 2011. "Land subsidence of Jakarta (Indonesia) and its relation with urban development," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1753-1771, December.
    6. P. Ward & M. Marfai & F. Yulianto & D. Hizbaron & J. Aerts, 2011. "Coastal inundation and damage exposure estimation: a case study for Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 899-916, March.
    7. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    8. Bhattarai, Keshav & Adhikari, Ambika P., 2022. "Minimizing Surface Run-off, Improving Underground Water Recharging, and On-site Rain Harvesting in the Kathmandu Valley," SocArXiv tqfns, Center for Open Science.
    9. Xu-Wei Wang & Ye-Shuang Xu, 2022. "Investigation on the phenomena and influence factors of urban ground collapse in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 1-33, August.
    10. Jie Dou & Xia Li & Ali Yunus & Uttam Paudel & Kuan-Tsung Chang & Zhongfan Zhu & Hamid Pourghasemi, 2015. "Automatic detection of sinkhole collapses at finer resolutions using a multi-component remote sensing approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1021-1044, September.
    11. Ya-Qiong Wang & Shao-Bing Zhang & Long-Long Chen & Yong-Li Xie & Zhi-Feng Wang, 2019. "Field monitoring on deformation of high rock slope during highway construction: A case study in Wenzhou, China," International Journal of Distributed Sensor Networks, , vol. 15(12), pages 15501477198, December.
    12. Yanbo Cao & Ya-ni Wei & Wen Fan & Min Peng & Liangliang Bao, 2020. "Experimental study of land subsidence in response to groundwater withdrawal and recharge in Changping District of Beijing," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-17, May.
    13. Sylvana Santos & Jaime Cabral & Ivaldo Pontes Filho, 2012. "Monitoring of soil subsidence in urban and coastal areas due to groundwater overexploitation using GPS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 421-439, October.
    14. Yong Liu & Hai-Jun Huang, 2013. "Characterization and mechanism of regional land subsidence in the Yellow River Delta, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 687-709, September.
    15. Chun-Yong Luo & Shui-Long Shen & Jie Han & Guan-Lin Ye & Suksun Horpibulsuk, 2015. "Hydrogeochemical environment of aquifer groundwater in Shanghai and potential hazards to underground infrastructures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 753-774, August.
    16. Zhongyuan Gu & Miaocong Cao & Chunguang Wang & Na Yu & Hongyu Qing, 2022. "Research on Mining Maximum Subsidence Prediction Based on Genetic Algorithm Combined with XGBoost Model," Sustainability, MDPI, vol. 14(16), pages 1-12, August.
    17. Guodong Li & Hongzhi Wang & Zhaoxuan Liu & Honglin Liu & Haitian Yan & Zenwei Liu, 2022. "Effects of Aeolian Sand and Water−Cement Ratio on Performance of a Novel Mine Backfill Material," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    18. Ye-Shuang Xu & Yao Yuan & Shui-Long Shen & Zhen-Yu Yin & Huai-Na Wu & Lei Ma, 2015. "Investigation into subsidence hazards due to groundwater pumping from Aquifer II in Changzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 281-296, August.
    19. Yong-Xia Wu & Tian-Liang Yang & Pei-Chao Li & Jin-Xin Lin, 2019. "Investigation of Groundwater Withdrawal and Recharge Affecting Underground Structures in the Shanghai Urban Area," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    20. Ahmed M. Youssef & Mazen M. Abu Abdullah & Biswajeet Pradhan & Ahmed F. D. Gaber, 2019. "Agriculture Sprawl Assessment Using Multi-Temporal Remote Sensing Images and Its Environmental Impact; Al-Jouf, KSA," Sustainability, MDPI, vol. 11(15), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:69:y:2013:i:3:p:2197-2214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.