IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10421-d894534.html
   My bibliography  Save this article

Research on Mining Maximum Subsidence Prediction Based on Genetic Algorithm Combined with XGBoost Model

Author

Listed:
  • Zhongyuan Gu

    (School of Investigation and Surveying Engineering, Changchun Institute of Technology, Changchun 130021, China)

  • Miaocong Cao

    (School of Investigation and Surveying Engineering, Changchun Institute of Technology, Changchun 130021, China)

  • Chunguang Wang

    (School of Investigation and Surveying Engineering, Changchun Institute of Technology, Changchun 130021, China)

  • Na Yu

    (School of Investigation and Surveying Engineering, Changchun Institute of Technology, Changchun 130021, China)

  • Hongyu Qing

    (School of Investigation and Surveying Engineering, Changchun Institute of Technology, Changchun 130021, China)

Abstract

The extreme gradient boosting (XGBoost) ensemble learning algorithm excels in solving complex nonlinear relational problems. In order to accurately predict the surface subsidence caused by mining, this work introduces the genetic algorithm (GA) and XGBoost integrated algorithm model for mining subsidence prediction and uses the Python language to develop the GA-XGBoost combined model. The hyperparameter vector of XGBoost is optimized by a genetic algorithm to improve the prediction accuracy and reliability of the XGBoost model. Using some domestic mining subsidence data sets to conduct a model prediction evaluation, the results show that the R2 (coefficient of determination) of the prediction results of the GA-XGBoost model is 0.941, the RMSE (root mean square error) is 0.369, and the MAE (mean absolute error) is 0.308. Then, compared with classic ensemble learning models such as XGBoost, random deep forest, and gradient boost, the GA-XGBoost model has higher prediction accuracy and performance than a single machine learning model.

Suggested Citation

  • Zhongyuan Gu & Miaocong Cao & Chunguang Wang & Na Yu & Hongyu Qing, 2022. "Research on Mining Maximum Subsidence Prediction Based on Genetic Algorithm Combined with XGBoost Model," Sustainability, MDPI, vol. 14(16), pages 1-12, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10421-:d:894534
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10421/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10421/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hasanuddin Abidin & Rochman Djaja & Dudy Darmawan & Samsul Hadi & Arifin Akbar & H. Rajiyowiryono & Y. Sudibyo & I. Meilano & M. Kasuma & J. Kahar & Cecep Subarya, 2001. "Land Subsidence of Jakarta (Indonesia) and its Geodetic Monitoring System," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 23(2), pages 365-387, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueliang Zhang & Jiawei Liu & Chi Zhang & Dongyan Shao & Zhiqiang Cai, 2023. "Innovation Performance Prediction of University Student Teams Based on Bayesian Networks," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    2. Weixing Lin & Leilei Liu & Guoyan Zhao & Zheng Jian, 2023. "Developing Hybrid DMO-XGBoost and DMO-RF Models for Estimating the Elastic Modulus of Rock," Mathematics, MDPI, vol. 11(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasanuddin Abidin & Heri Andreas & Irwan Gumilar & Yoichi Fukuda & Yusuf Pohan & T. Deguchi, 2011. "Land subsidence of Jakarta (Indonesia) and its relation with urban development," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1753-1771, December.
    2. P. Ward & M. Marfai & F. Yulianto & D. Hizbaron & J. Aerts, 2011. "Coastal inundation and damage exposure estimation: a case study for Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 899-916, March.
    3. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    4. Sylvana Santos & Jaime Cabral & Ivaldo Pontes Filho, 2012. "Monitoring of soil subsidence in urban and coastal areas due to groundwater overexploitation using GPS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 421-439, October.
    5. Beibei Hu & Jun Zhou & Shiyuan Xu & Zhenlou Chen & Jun Wang & Dongqi Wang & Lei Wang & Jifa Guo & Weiqing Meng, 2013. "Assessment of hazards and economic losses induced by land subsidence in Tianjin Binhai new area from 2011 to 2020 based on scenario analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 873-886, March.
    6. Huafeng Xu & Bin Liu & Zhigeng Fang, 2014. "New grey prediction model and its application in forecasting land subsidence in coal mine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1181-1194, March.
    7. Dayang Xuan & Jialin Xu, 2014. "Grout injection into bed separation to control surface subsidence during longwall mining under villages: case study of Liudian coal mine, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 883-906, September.
    8. Beibei Chen & Huili Gong & Xiaojuan Li & Kunchao Lei & Yinghai Ke & Guangyao Duan & Chaofan Zhou, 2015. "Spatial correlation between land subsidence and urbanization in Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2637-2652, February.
    9. Bijuan Huang & Longcang Shu & Y. Yang, 2012. "Groundwater Overexploitation Causing Land Subsidence: Hazard Risk Assessment Using Field Observation and Spatial Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4225-4239, November.
    10. Rejane Maria Rodrigues Luna & Silvio Jacks Garnés & Jaime Joaquim Cabral & Sylvana Melo Santos, 2021. "Suitability of GNSS for analysis of soil subsidence in Recife in a highly urbanized coastal area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1821-1837, April.
    11. Cheinway Hwang & Wei-Chia Hung & Chih-Hsi Liu, 2008. "Results of geodetic and geotechnical monitoring of subsidence for Taiwan High Speed Rail operation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(1), pages 1-16, October.
    12. Muh Marfai & Andung Sekaranom & Philip Ward, 2015. "Community responses and adaptation strategies toward flood hazard in Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1127-1144, January.
    13. Richa Bhattarai & Haireti Alifu & Aikebaier Maitiniyazi & Akihiko Kondoh, 2017. "Detection of Land Subsidence in Kathmandu Valley, Nepal, Using DInSAR Technique," Land, MDPI, vol. 6(2), pages 1-17, June.
    14. Karl Wyatt Espiritu & Christian James Reyes & Theresa Marie Benitez & Reina Clarise Tokita & Lear Joseph Galvez & Ryan Ramirez, 2022. "Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) reveals continued ground deformation in and around Metro Manila, Philippines, associated with groundwater exploitation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3139-3161, December.
    15. Ali M. Rajabi, 2018. "A numerical study on land subsidence due to extensive overexploitation of groundwater in Aliabad plain, Qom-Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 1085-1103, September.
    16. Jianxiu Wang & Xueying Gu & Yukun Jiang & Tianrong Huang & Bo Feng, 2013. "Point-line-area-volume index system of land subsidence and application in Ningbo, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 2197-2214, December.
    17. Haushofer, Jakob, 2018. "Towards a climate-resilient Jakarta: An analysis of the resilience thinking behind Jakarta's current public policy approach to climate-related hazards," ÖFSE-Forum, Austrian Foundation for Development Research (ÖFSE), volume 65, number 65, Juni.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10421-:d:894534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.