IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v23y2001i2p365-387.html
   My bibliography  Save this article

Land Subsidence of Jakarta (Indonesia) and its Geodetic Monitoring System

Author

Listed:
  • Hasanuddin Abidin
  • Rochman Djaja
  • Dudy Darmawan
  • Samsul Hadi
  • Arifin Akbar
  • H. Rajiyowiryono
  • Y. Sudibyo
  • I. Meilano
  • M. Kasuma
  • J. Kahar
  • Cecep Subarya

Abstract

Jakarta is the capital city of Indonesia with a population of about 10 million people, inhabiting an area of about 25 × 25 km. It has been reported for sometime that locations in Jakarta are subsiding at different rates. Up to the present, there has been no comprehensive information about the characteristics and pattern of land subsidence in the Jakarta area. Usually land subsidence in Jakarta is measured using extensometers and ground water level observations, or estimated using geological and hydrological parameters. To give a better picture about land subsidence, geodetic-based monitoring systems utilizing leveling and GPS surveys have also been implemented. The land subsidence characteristics of Jakarta and its surrounding area areinvestigated using data from three repeated leveling surveys performed in1982, 1991, and 1997, and two repeated GPS surveys conducted in 1997and 1999. Leveling surveys detected subsidence up to about 80 cm duringthe period of 1982–1991, and up to about 160 cm during the 1991–1997period; while GPS surveys observed subsidence up to about 20 cm duringthe period of 1997–1999. Comparison with the hydrological data shows thatland subsidence in Jakarta is strongly related to excessive groundwater extraction. Copyright Kluwer Academic Publishers 2001

Suggested Citation

  • Hasanuddin Abidin & Rochman Djaja & Dudy Darmawan & Samsul Hadi & Arifin Akbar & H. Rajiyowiryono & Y. Sudibyo & I. Meilano & M. Kasuma & J. Kahar & Cecep Subarya, 2001. "Land Subsidence of Jakarta (Indonesia) and its Geodetic Monitoring System," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 23(2), pages 365-387, March.
  • Handle: RePEc:spr:nathaz:v:23:y:2001:i:2:p:365-387
    DOI: 10.1023/A:1011144602064
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1011144602064
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1011144602064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richa Bhattarai & Haireti Alifu & Aikebaier Maitiniyazi & Akihiko Kondoh, 2017. "Detection of Land Subsidence in Kathmandu Valley, Nepal, Using DInSAR Technique," Land, MDPI, vol. 6(2), pages 1-17, June.
    2. Beibei Hu & Jun Zhou & Shiyuan Xu & Zhenlou Chen & Jun Wang & Dongqi Wang & Lei Wang & Jifa Guo & Weiqing Meng, 2013. "Assessment of hazards and economic losses induced by land subsidence in Tianjin Binhai new area from 2011 to 2020 based on scenario analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 873-886, March.
    3. Ali M. Rajabi, 2018. "A numerical study on land subsidence due to extensive overexploitation of groundwater in Aliabad plain, Qom-Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 1085-1103, September.
    4. Zhongyuan Gu & Miaocong Cao & Chunguang Wang & Na Yu & Hongyu Qing, 2022. "Research on Mining Maximum Subsidence Prediction Based on Genetic Algorithm Combined with XGBoost Model," Sustainability, MDPI, vol. 14(16), pages 1-12, August.
    5. Rejane Maria Rodrigues Luna & Silvio Jacks Garnés & Jaime Joaquim Cabral & Sylvana Melo Santos, 2021. "Suitability of GNSS for analysis of soil subsidence in Recife in a highly urbanized coastal area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1821-1837, April.
    6. Sylvana Santos & Jaime Cabral & Ivaldo Pontes Filho, 2012. "Monitoring of soil subsidence in urban and coastal areas due to groundwater overexploitation using GPS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 421-439, October.
    7. Hasanuddin Abidin & Heri Andreas & Irwan Gumilar & Yoichi Fukuda & Yusuf Pohan & T. Deguchi, 2011. "Land subsidence of Jakarta (Indonesia) and its relation with urban development," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1753-1771, December.
    8. Cheinway Hwang & Wei-Chia Hung & Chih-Hsi Liu, 2008. "Results of geodetic and geotechnical monitoring of subsidence for Taiwan High Speed Rail operation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(1), pages 1-16, October.
    9. P. Ward & M. Marfai & F. Yulianto & D. Hizbaron & J. Aerts, 2011. "Coastal inundation and damage exposure estimation: a case study for Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 899-916, March.
    10. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    11. Jianxiu Wang & Xueying Gu & Yukun Jiang & Tianrong Huang & Bo Feng, 2013. "Point-line-area-volume index system of land subsidence and application in Ningbo, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 2197-2214, December.
    12. Huafeng Xu & Bin Liu & Zhigeng Fang, 2014. "New grey prediction model and its application in forecasting land subsidence in coal mine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1181-1194, March.
    13. Haushofer, Jakob, 2018. "Towards a climate-resilient Jakarta: An analysis of the resilience thinking behind Jakarta's current public policy approach to climate-related hazards," ÖFSE-Forum, Austrian Foundation for Development Research (ÖFSE), volume 65, number 65, Juni.
    14. Dayang Xuan & Jialin Xu, 2014. "Grout injection into bed separation to control surface subsidence during longwall mining under villages: case study of Liudian coal mine, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 883-906, September.
    15. Beibei Chen & Huili Gong & Xiaojuan Li & Kunchao Lei & Yinghai Ke & Guangyao Duan & Chaofan Zhou, 2015. "Spatial correlation between land subsidence and urbanization in Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2637-2652, February.
    16. Karl Wyatt Espiritu & Christian James Reyes & Theresa Marie Benitez & Reina Clarise Tokita & Lear Joseph Galvez & Ryan Ramirez, 2022. "Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) reveals continued ground deformation in and around Metro Manila, Philippines, associated with groundwater exploitation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3139-3161, December.
    17. Bijuan Huang & Longcang Shu & Y. Yang, 2012. "Groundwater Overexploitation Causing Land Subsidence: Hazard Risk Assessment Using Field Observation and Spatial Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4225-4239, November.
    18. Muh Marfai & Andung Sekaranom & Philip Ward, 2015. "Community responses and adaptation strategies toward flood hazard in Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1127-1144, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:23:y:2001:i:2:p:365-387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.