IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v69y2013i1p403-423.html
   My bibliography  Save this article

Estimating flood exposure potentials in Turkish catchments through index-based flood mapping

Author

Listed:
  • Gülay Onuşluel Gül

Abstract

Flooding is widely believed to be the most common natural disaster in Europe, and the changing climatic conditions are estimated to increase its adverse impacts. Effective flood strategies require thorough consideration of the factors underlying the flood generation mechanism and a widened display of mitigation priorities for spatially exhaustive assessments. Flood potential maps generated herein for indicating potential flood areas prove to be among powerful tools for comprehensive flood assessments. In the presented study, a countrywide characterization is achieved in this context by analyzing catchment units, which constitute the river basin systems in Turkey, through a series of spatial indices adapted from different factors effective in flood generation. The study aims to contribute to depicting priorities for in-depth flood assessments and to the re-orientation of subsequent control measures. The flood potential maps obtained for river catchments and designating individual locations with comparably higher flood potentials are expected to set light to the selection of case studies for local flood research in Turkey while contributing to decision making and policy implementation on flood control at the macroscale. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Gülay Onuşluel Gül, 2013. "Estimating flood exposure potentials in Turkish catchments through index-based flood mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 403-423, October.
  • Handle: RePEc:spr:nathaz:v:69:y:2013:i:1:p:403-423
    DOI: 10.1007/s11069-013-0717-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0717-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0717-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jens H. Christensen & Ole B. Christensen, 2003. "Severe summertime flooding in Europe," Nature, Nature, vol. 421(6925), pages 805-806, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Tzilivakis & D. Warner & A. Green & K. Lewis, 2015. "Adapting to climate change: assessing the vulnerability of ecosystem services in Europe in the context of rural development," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(4), pages 547-572, April.
    2. Zbigniew Kundzewicz & Nicola Lugeri & Rutger Dankers & Yukiko Hirabayashi & Petra Döll & Iwona Pińskwar & Tomasz Dysarz & Stefan Hochrainer & Piotr Matczak, 2010. "Assessing river flood risk and adaptation in Europe—review of projections for the future," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 641-656, October.
    3. Juan-Carlos Ciscar & Antonio Soria & Clare M. Goodess & Ole B. Christensen & Ana Iglesias & Luis Garrote & Marta Moneo & Sonia Quiroga & Luc Feyen & Rutger Dankers & Robert Nicholls & Julie Richards &, 2009. "Climate change impacts in Europe. Final report of the PESETA research project," JRC Research Reports JRC55391, Joint Research Centre.
    4. Suhyung Jang & M. Levent Kavvas & Kei Ishida & Toan Trinh & Noriaki Ohara & Shuichi Kure & Z. Q. Chen & Michael L. Anderson & G. Matanga & Kara J. Carr, 2017. "A Performance Evaluation of Dynamical Downscaling of Precipitation over Northern California," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    5. S. Athanasatos & S. Michaelides & M. Papadakis, 2014. "Identification of weather trends for use as a component of risk management for port operations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(1), pages 41-61, May.
    6. Luc Feyen & Rutger Dankers & Katalin Bódis & Peter Salamon & José Barredo, 2012. "Fluvial flood risk in Europe in present and future climates," Climatic Change, Springer, vol. 112(1), pages 47-62, May.
    7. Sébastien Nusslé & Kathleen R Matthews & Stephanie M Carlson, 2015. "Mediating Water Temperature Increases Due to Livestock and Global Change in High Elevation Meadow Streams of the Golden Trout Wilderness," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-22, November.
    8. Bogusława Baran-Zgłobicka & Dominika Godziszewska & Wojciech Zgłobicki, 2021. "The Flash Floods Risk in the Local Spatial Planning (Case Study: Lublin Upland, E Poland)," Resources, MDPI, vol. 10(2), pages 1-20, February.
    9. Hefei Huang & Huijuan Cui & Quansheng Ge, 2021. "Assessment of potential risks induced by increasing extreme precipitation under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2059-2079, September.
    10. Igor Leščešen & Mojca Šraj & Biljana Basarin & Dragoslav Pavić & Minučer Mesaroš & Manfred Mudelsee, 2022. "Regional Flood Frequency Analysis of the Sava River in South-Eastern Europe," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    11. Osvaldo Sala & Laureano Gherardi & Debra Peters, 2015. "Enhanced precipitation variability effects on water losses and ecosystem functioning: differential response of arid and mesic regions," Climatic Change, Springer, vol. 131(2), pages 213-227, July.
    12. Jose I. Barredo & Carlo Lavalle & Valentina Sagris & Guy Engelen, 2005. "Representing future urban and regional scenarios for flood hazard mitigation," ERSA conference papers ersa05p147, European Regional Science Association.
    13. Chun-Chao Kuo & Kai Ernn Gan & Yang Yang & Thian Yew Gan, 2021. "Future intensity–duration–frequency curves of Edmonton under climate warming and increased convective available potential energy," Climatic Change, Springer, vol. 168(3), pages 1-23, October.
    14. Mooij, W.M. & De Senerpont Domis, L.N. & Janse, J.H., 2009. "Linking species- and ecosystem-level impacts of climate change in lakes with a complex and a minimal model," Ecological Modelling, Elsevier, vol. 220(21), pages 3011-3020.
    15. Zbigniew Kundzewicz & Yukiko Hirabayashi & Shinjiro Kanae, 2010. "River Floods in the Changing Climate—Observations and Projections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2633-2646, September.
    16. Johannes Schuler & Roos Adelhart Toorop & Magali Willaume & Anthony Vermue & Nicole Schläfke & Sandra Uthes & Peter Zander & Walter Rossing, 2020. "Assessing Climate Change Impacts and Adaptation Options for Farm Performance Using Bio-Economic Models in Southwestern France," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    17. Bracho-Mujica, Gennady & Hayman, Peter T. & Ostendorf, Bertram, 2019. "Modelling long-term risk profiles of wheat grain yield with limited climate data," Agricultural Systems, Elsevier, vol. 173(C), pages 393-402.
    18. Beniston, Martin, 2007. "Linking extreme climate events and economic impacts: Examples from the Swiss Alps," Energy Policy, Elsevier, vol. 35(11), pages 5384-5392, November.
    19. Wang, Yutao & Sun, Mingxing & Song, Baimin, 2017. "Public perceptions of and willingness to pay for sponge city initiatives in China," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 11-20.
    20. Yaolong Liu & Guorui Feng & Ye Xue & Huaming Zhang & Ruoguang Wang, 2015. "Small-scale natural disaster risk scenario analysis: a case study from the town of Shuitou, Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2167-2183, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:69:y:2013:i:1:p:403-423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.