IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v69y2013i1p279-293.html
   My bibliography  Save this article

Weighted fuzzy kernel-clustering algorithm with adaptive differential evolution and its application on flood classification

Author

Listed:
  • Li Liao
  • Jianzhong Zhou
  • Qiang Zou

Abstract

Flood classification is the fundamental problem of flood risk analysis and plays an important role in flood disaster risk management. Considering the fact that flood classification is a problem of multi-attribute and multi-stage fuzzy synthetically evaluation, this paper mainly proposed the weighted fuzzy kernel-clustering algorithm (WFKCA) with adaptive differential evolution algorithm (ADE) to solve this problem. Firstly, WFKCA is detailed introduced, and then the differential evolution algorithm (DE) is applied for the fuzzy clustering, thus to obtain the better results. Taking into consideration the disadvantage of DE, ADE is present after the introduction of DE. Finally, the combination of WFKCA and ADE is applied for flood classification, and the results demonstrated the methodology is reasonable and reliable, thus provide a new effective approach for flood classification. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Li Liao & Jianzhong Zhou & Qiang Zou, 2013. "Weighted fuzzy kernel-clustering algorithm with adaptive differential evolution and its application on flood classification," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 279-293, October.
  • Handle: RePEc:spr:nathaz:v:69:y:2013:i:1:p:279-293
    DOI: 10.1007/s11069-013-0707-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0707-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0707-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ju-Liang Jin & Yi-Ming Wei & Le-Le Zou & Li Liu & Juan Fu, 2012. "Risk evaluation of China’s natural disaster systems: an approach based on triangular fuzzy numbers and stochastic simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(1), pages 129-139, May.
    2. Dapeng Huang & Renhe Zhang & Zhiguo Huo & Fei Mao & Youhao E & Wei Zheng, 2012. "An assessment of multidimensional flood vulnerability at the provincial scale in China based on the DEA method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1575-1586, November.
    3. Georgia Kandilioti & Christos Makropoulos, 2012. "Preliminary flood risk assessment: the case of Athens," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 441-468, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guozhen Wei & Wei Ding & Guohua Liang & Bin He & Jian Wu & Rui Zhang & Huicheng Zhou, 2022. "A New Framework Based on Data-Based Mechanistic Model and Forgetting Mechanism for Flood Forecast," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3591-3607, August.
    2. Qiang Zou & Li Liao & Hui Qin, 2020. "Fast Comprehensive Flood Risk Assessment Based on Game Theory and Cloud Model Under Parallel Computation (P-GT-CM)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1625-1648, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue Zhao & Zaiwu Gong & Wenhao Wang & Kai Luo, 2014. "The comprehensive risk evaluation on rainstorm and flood disaster losses in China mainland from 2004 to 2009: based on the triangular gray correlation theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1001-1016, March.
    2. Martina Zeleňáková & Lenka Gaňová & Pavol Purcz & Ladislav Satrapa, 2015. "Methodology of flood risk assessment from flash floods based on hazard and vulnerability of the river basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 2055-2071, December.
    3. Yuanshu Jing & Jian Li & Yongyuan Weng & Jing Wang, 2014. "The assessment of drought relief by typhoon Saomai based on MODIS remote sensing data in Shanghai, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1215-1225, March.
    4. Naiming Xie & Jianghui Xin & Sifeng Liu, 2014. "China’s regional meteorological disaster loss analysis and evaluation based on grey cluster model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1067-1089, March.
    5. Osberghaus, Daniel, 2015. "The determinants of private flood mitigation measures in Germany — Evidence from a nationwide survey," Ecological Economics, Elsevier, vol. 110(C), pages 36-50.
    6. Ming-Wu Wang & Peng Xu & Jian Li & Kui-Yuan Zhao, 2014. "A novel set pair analysis method based on variable weights for liquefaction evaluation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1527-1534, January.
    7. Zahra Ebrahimi Gatgash & Seyed Hamidreza Sadeghi, 2023. "Prioritization-based management of the watershed using health assessment analysis at sub-watershed scale," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9673-9702, September.
    8. Dandan Zhang & Juqin Shen & Pengfei Liu & Fuhua Sun, 2020. "Allocation of Flood Drainage Rights Based on the PSR Model and Pythagoras Fuzzy TOPSIS Method," IJERPH, MDPI, vol. 17(16), pages 1-19, August.
    9. Chinh Luu & Hieu Xuan Tran & Binh Thai Pham & Nadhir Al-Ansari & Thai Quoc Tran & Nga Quynh Duong & Nam Hai Dao & Lam Phuong Nguyen & Huu Duy Nguyen & Huong Thu Ta & Hiep Van Le & Jason von Meding, 2020. "Framework of Spatial Flood Risk Assessment for a Case Study in Quang Binh Province, Vietnam," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    10. Yi Ge & Wen Dou & Ning Liu, 2017. "Planning Resilient and Sustainable Cities: Identifying and Targeting Social Vulnerability to Climate Change," Sustainability, MDPI, vol. 9(8), pages 1-19, August.
    11. Chengguang Lai & Xiaohong Chen & Xiaoyu Chen & Zhaoli Wang & Xushu Wu & Shiwei Zhao, 2015. "A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1243-1259, June.
    12. Yang Zhou & Ning Li & Wenxiang Wu & Jidong Wu & Peijun Shi, 2014. "Local Spatial and Temporal Factors Influencing Population and Societal Vulnerability to Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(4), pages 614-639, April.
    13. Mengyao Gu & Youling Chen, 2019. "Two improvements of similarity-based residual life prediction methods," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 303-315, January.
    14. A. N. Angelakis & G. Antoniou & K. Voudouris & N. Kazakis & N. Dalezios & N. Dercas, 2020. "History of floods in Greece: causes and measures for protection," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 833-852, April.
    15. Peng Wang & Yifan Zhu & Ping Yu, 2022. "Assessment of Urban Flood Vulnerability Using the Integrated Framework and Process Analysis: A Case from Nanjing, China," IJERPH, MDPI, vol. 19(24), pages 1-19, December.
    16. Chengguang Lai & Xiaohong Chen & Zhaoli Wang & Haijun Yu & Xiaoyan Bai, 2020. "Flood Risk Assessment and Regionalization from Past and Future Perspectives at Basin Scale," Risk Analysis, John Wiley & Sons, vol. 40(7), pages 1399-1417, July.
    17. Bahaa Elboshy & Shinjiro Kanae & Mona Gamaleldin & Hany Ayad & Toshihiro Osaragi & Waleed Elbarki, 2019. "A framework for pluvial flood risk assessment in Alexandria considering the coping capacity," Environment Systems and Decisions, Springer, vol. 39(1), pages 77-94, March.
    18. Sitotaw Haile Erena & Hailu Worku, 2019. "Urban flood vulnerability assessments: the case of Dire Dawa city, Ethiopia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 495-516, June.
    19. Feng Li & Qingyuan Zhu & Jun Zhuang, 2018. "Analysis of fire protection efficiency in the United States: a two-stage DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 23-68, January.
    20. Yuanyuan He & Zaiwu Gong, 2014. "China’s regional rainstorm floods disaster evaluation based on grey incidence multiple-attribute decision model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1125-1144, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:69:y:2013:i:1:p:279-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.