IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p3058-d344006.html
   My bibliography  Save this article

Framework of Spatial Flood Risk Assessment for a Case Study in Quang Binh Province, Vietnam

Author

Listed:
  • Chinh Luu

    (Faculty of Hydraulic Engineering, National University of Civil Engineering, Hanoi 100000, Vietnam)

  • Hieu Xuan Tran

    (Department of Urban Planning, National University of Civil Engineering, Hanoi 100000, Vietnam)

  • Binh Thai Pham

    (Department of Geotechnical Engineering, University of Transport Technology, Hanoi 100000, Vietnam)

  • Nadhir Al-Ansari

    (Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 971 87 Lulea, Sweden)

  • Thai Quoc Tran

    (Department of Urban Planning, National University of Civil Engineering, Hanoi 100000, Vietnam)

  • Nga Quynh Duong

    (Department of Urban Planning, National University of Civil Engineering, Hanoi 100000, Vietnam)

  • Nam Hai Dao

    (Department of Urban Planning, National University of Civil Engineering, Hanoi 100000, Vietnam)

  • Lam Phuong Nguyen

    (Faculty of Hydraulic Engineering, National University of Civil Engineering, Hanoi 100000, Vietnam)

  • Huu Duy Nguyen

    (Faculty of Geography, VNU University of Science, Vietnam National University, Hanoi 100000, Vietnam)

  • Huong Thu Ta

    (Centre For Water Resources Software, Vietnam Academy for Water Resources, Hanoi 100000, Vietnam)

  • Hiep Van Le

    (Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam)

  • Jason von Meding

    (Rinker School of Construction Management, University of Florida, Gainesville, FL 32611, USA)

Abstract

Vietnam has been extensively affected by floods, suffering heavy losses in human life and property. While the Vietnamese government has focused on structural measures of flood defence such as levees and early warning systems, the country still lacks flood risk assessment methodologies and frameworks at local and national levels. In response to this gap, this study developed a flood risk assessment framework that uses historical flood mark data and a high-resolution digital elevation model to create an inundation map, then combined this map with exposure and vulnerability data to develop a holistic flood risk assessment map. The case study is the October 2010 flood event in Quang Binh province, which caused 74 deaths, 210 injuries, 188,628 flooded properties, 9019 ha of submerged and damaged agricultural land, and widespread damages to canals, levees, and roads. The final flood risk map showed a total inundation area of 64,348 ha, in which 8.3% area of low risk, 16.3% area of medium risk, 12.0% area of high risk, 37.1% area of very high risk, and 26.2% area of extremely high risk. The holistic flood risk assessment map of Quang Binh province is a valuable tool and source for flood preparedness activities at the local scale.

Suggested Citation

  • Chinh Luu & Hieu Xuan Tran & Binh Thai Pham & Nadhir Al-Ansari & Thai Quoc Tran & Nga Quynh Duong & Nam Hai Dao & Lam Phuong Nguyen & Huu Duy Nguyen & Huong Thu Ta & Hiep Van Le & Jason von Meding, 2020. "Framework of Spatial Flood Risk Assessment for a Case Study in Quang Binh Province, Vietnam," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:3058-:d:344006
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/3058/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/3058/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akiko Masuya & Ashraf Dewan & Robert Corner, 2015. "Population evacuation: evaluating spatial distribution of flood shelters and vulnerable residential units in Dhaka with geographic information systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1859-1882, September.
    2. Bruce Mitchell, 2005. "Integrated Water Resource Management, Institutional Arrangements, and Land-Use Planning," Environment and Planning A, , vol. 37(8), pages 1335-1352, August.
    3. Zbigniew Kundzewicz & Nicola Lugeri & Rutger Dankers & Yukiko Hirabayashi & Petra Döll & Iwona Pińskwar & Tomasz Dysarz & Stefan Hochrainer & Piotr Matczak, 2010. "Assessing river flood risk and adaptation in Europe—review of projections for the future," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 641-656, October.
    4. Milica Markovic, 2012. "Multi criteria Analysis of Hydraulic Structures for River Training Works," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3893-3906, October.
    5. Yukiko Hirabayashi & Roobavannan Mahendran & Sujan Koirala & Lisako Konoshima & Dai Yamazaki & Satoshi Watanabe & Hyungjun Kim & Shinjiro Kanae, 2013. "Global flood risk under climate change," Nature Climate Change, Nature, vol. 3(9), pages 816-821, September.
    6. Chinh Luu & Jason Meding & Sittimont Kanjanabootra, 2018. "Assessing flood hazard using flood marks and analytic hierarchy process approach: a case study for the 2013 flood event in Quang Nam, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1031-1050, February.
    7. Sebastian Scheuer & Dagmar Haase & Volker Meyer, 2011. "Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: from a starting point view towards an end point view of vulnera," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 731-751, August.
    8. Georgia Kandilioti & Christos Makropoulos, 2012. "Preliminary flood risk assessment: the case of Athens," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 441-468, March.
    9. Arash Malekian & Ali Azarnivand, 2016. "Application of Integrated Shannon’s Entropy and VIKOR Techniques in Prioritization of Flood Risk in the Shemshak Watershed, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 409-425, January.
    10. Millet, Ido & Harker, Patrick T., 1990. "Globally effective questioning in the Analytic Hierarchy Process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 88-97, September.
    11. Vaidya, Omkarprasad S. & Kumar, Sushil, 2006. "Analytic hierarchy process: An overview of applications," European Journal of Operational Research, Elsevier, vol. 169(1), pages 1-29, February.
    12. Eun-Sung Chung & Kil Lee, 2009. "Identification of Spatial Ranking of Hydrological Vulnerability Using Multi-Criteria Decision Making Techniques: Case Study of Korea," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2395-2416, September.
    13. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong Ngoc Nguyen & Hiroatsu Fukuda & Minh Nguyet Nguyen, 2024. "Assessment of the Susceptibility of Urban Flooding Using GIS with an Analytical Hierarchy Process in Hanoi, Vietnam," Sustainability, MDPI, vol. 16(10), pages 1-24, May.
    2. Chinh Luu & Quynh Duy Bui & Romulus Costache & Luan Thanh Nguyen & Thu Thuy Nguyen & Tran Phong & Hiep Le & Binh Thai Pham, 2021. "Flood-prone area mapping using machine learning techniques: a case study of Quang Binh province, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3229-3251, September.
    3. Maxim Arseni & Adrian Rosu & Madalina Calmuc & Valentina Andreea Calmuc & Catalina Iticescu & Lucian Puiu Georgescu, 2020. "Development of Flood Risk and Hazard Maps for the Lower Course of the Siret River, Romania," Sustainability, MDPI, vol. 12(16), pages 1-24, August.
    4. Huu Duy Nguyen & Thi Ha Thanh Nguyen & Quoc-Huy Nguyen & Tien Giang Nguyen & Dinh Kha Dang & Y. Nhu Nguyen & Thu Huong Bui & Ngoc Diep Nguyen & Quang-Thanh Bui & Petre Brecan & Alexandru-Ionut Petriso, 2023. "Bottom-up approach for flood-risk management in developing countries: a case study in the Gianh River watershed of Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1933-1959, September.
    5. Shuang Liu & Rui Liu & Nengzhi Tan, 2021. "A Spatial Improved-kNN-Based Flood Inundation Risk Framework for Urban Tourism under Two Rainfall Scenarios," Sustainability, MDPI, vol. 13(5), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chinh Luu & Jason Meding & Sittimont Kanjanabootra, 2018. "Assessing flood hazard using flood marks and analytic hierarchy process approach: a case study for the 2013 flood event in Quang Nam, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1031-1050, February.
    2. Stefanos Stefanidis & Dimitrios Stathis, 2013. "Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 569-585, September.
    3. Ziyue Zeng & Guoqiang Tang & Di Long & Chao Zeng & Meihong Ma & Yang Hong & Hui Xu & Jing Xu, 2016. "A cascading flash flood guidance system: development and application in Yunnan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2071-2093, December.
    4. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    5. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    6. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    7. Martina Zeleňáková & Lenka Gaňová & Pavol Purcz & Ladislav Satrapa, 2015. "Methodology of flood risk assessment from flash floods based on hazard and vulnerability of the river basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 2055-2071, December.
    8. Wenshuai Wu & Gang Kou, 2016. "A group consensus model for evaluating real estate investment alternatives," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-10, December.
    9. Lucie Lidinska & Josef Jablonsky, 2018. "AHP model for performance evaluation of employees in a Czech management consulting company," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(1), pages 239-258, March.
    10. Ebrahim Ahmadisharaf & Alfred J. Kalyanapu & Eun-Sung Chung, 2017. "Sustainability-Based Flood Hazard Mapping of the Swannanoa River Watershed," Sustainability, MDPI, vol. 9(10), pages 1-15, September.
    11. M Tavana & M A Sodenkamp, 2010. "A fuzzy multi-criteria decision analysis model for advanced technology assessment at Kennedy Space Center," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(10), pages 1459-1470, October.
    12. Jongseok Seo & Lidziya Lysiankova & Young-Seok Ock & Dongphil Chun, 2017. "Priorities of Coworking Space Operation Based on Comparison of the Hosts and Users’ Perspectives," Sustainability, MDPI, vol. 9(8), pages 1-10, August.
    13. Yael Grushka-Cockayne & Bert De Reyck & Zeger Degraeve, 2008. "An Integrated Decision-Making Approach for Improving European Air Traffic Management," Management Science, INFORMS, vol. 54(8), pages 1395-1409, August.
    14. Scholz, Michael & Pfeiffer, Jella & Rothlauf, Franz, 2017. "Using PageRank for non-personalized default rankings in dynamic markets," European Journal of Operational Research, Elsevier, vol. 260(1), pages 388-401.
    15. Hongxun Xiang & Xia Heng & Boleng Zhai & Lichen Yang, 2024. "Digital and Culture: Towards More Resilient Urban Community Governance," Land, MDPI, vol. 13(6), pages 1-18, May.
    16. R. Jothi Basu & Nachiappan Subramanian & Angappa Gunasekaran & P. L. K. Palaniappan, 2017. "Influence of non-price and environmental sustainability factors on truckload procurement process," Annals of Operations Research, Springer, vol. 250(2), pages 363-388, March.
    17. Ashraf Abdelkarim & Mohamed Hssan Hassan Abdelhafez & Khaled Elkhayat & Mohammad Alshenaifi & Sultan Alfraidi & Ali Aldersoni & Ghazy Albaqawy & Amer Aldamaty & Ayman Ragab, 2024. "Spatial Suitability Index for Sustainable Urban Development in Desert Hinterland Using a Geographical-Information-System-Based Multicriteria Decision-Making Approach," Land, MDPI, vol. 13(7), pages 1-37, July.
    18. Ivan Ligardo-Herrera & Tomás Gómez-Navarro & Hannia Gonzalez-Urango, 2019. "Application of the ANP to the prioritization of project stakeholders in the context of responsible research and innovation," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(3), pages 679-701, September.
    19. Tom Pape, 2020. "Prioritising data items for business analytics: Framework and application to human resources," Papers 2012.13813, arXiv.org.
    20. Lee, Hakyeon & Geum, Youngjung, 2017. "Development of the scenario-based technology roadmap considering layer heterogeneity: An approach using CIA and AHP," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 12-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:3058-:d:344006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.