IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v50y2009i1p145-160.html
   My bibliography  Save this article

Trends in heat-related mortality in the United States, 1975–2004

Author

Listed:
  • Scott Sheridan
  • Adam Kalkstein
  • Laurence Kalkstein

Abstract

This study addresses the long-term trends in heat-related mortality across 29 US metropolitan areas from 1975 to 2004 to discern the spatial patterns and temporal trends in heat vulnerability. Mortality data have been standardized to account for population trends, and seasonal and interannual variability. On days when a city experienced an “oppressive” air mass, mean anomalous mortality was calculated, along with the likelihood that oppressive days led to a mortality response at least one standard deviation above the baseline value. Results show a general decline in heat-related mortality from the 1970s to 1990s, after which the decline seems to have abated. The likelihood of oppressive days leading to significant increases in mortality has shown less of a decline. The number of oppressive days has stayed the same or increased at most metropolitan areas. With US homes near saturation in terms of air-conditioning availability, an aging population is still significantly vulnerable to heat events. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • Scott Sheridan & Adam Kalkstein & Laurence Kalkstein, 2009. "Trends in heat-related mortality in the United States, 1975–2004," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(1), pages 145-160, July.
  • Handle: RePEc:spr:nathaz:v:50:y:2009:i:1:p:145-160
    DOI: 10.1007/s11069-008-9327-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-008-9327-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-008-9327-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Whitman, S. & Good, G. & Donoghue, E.R. & Benbow, N. & Shou, W. & Mou, S., 1997. "Mortality in Chicago attributed to the July 1995 heat wave," American Journal of Public Health, American Public Health Association, vol. 87(9), pages 1515-1518.
    2. Harlan, Sharon L. & Brazel, Anthony J. & Prashad, Lela & Stefanov, William L. & Larsen, Larissa, 2006. "Neighborhood microclimates and vulnerability to heat stress," Social Science & Medicine, Elsevier, vol. 63(11), pages 2847-2863, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baulcomb, Corinne, 2011. "Review of the Evidence Linking Climate Change to Human Health for Eight Diseases of Tropical Importance," Working Papers 131463, Scotland's Rural College (formerly Scottish Agricultural College), Land Economy & Environment Research Group.
    2. David Hondula & Robert Davis, 2014. "The predictability of high-risk zones for heat-related mortality in seven US cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 771-788, November.
    3. -, 2011. "An economic assessment of the impact of climate change on the health sector in Montserrat," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38589, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    4. Kristie S. Gutierrez & Catherine E. LePrevost, 2016. "Climate Justice in Rural Southeastern United States: A Review of Climate Change Impacts and Effects on Human Health," IJERPH, MDPI, vol. 13(2), pages 1-21, February.
    5. -, 2011. "An assessment of the economic impact Of climate change on the health sector in Saint Lucia," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38597, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    6. Ghasem Toloo & Gerard FitzGerald & Peter Aitken & Kenneth Verrall & Shilu Tong, 2013. "Evaluating the effectiveness of heat warning systems: systematic review of epidemiological evidence," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 58(5), pages 667-681, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Nairn & Bertram Ostendorf & Peng Bi, 2018. "Performance of Excess Heat Factor Severity as a Global Heatwave Health Impact Index," IJERPH, MDPI, vol. 15(11), pages 1-26, November.
    2. Claire Demoury & Raf Aerts & Bram Vandeninden & Bert Van Schaeybroeck & Eva M. De Clercq, 2022. "Impact of Short-Term Exposure to Extreme Temperatures on Mortality: A Multi-City Study in Belgium," IJERPH, MDPI, vol. 19(7), pages 1-13, March.
    3. H. Allen Klaiber & Joshua K. Abbott & V. Kerry Smith, 2017. "Some Like It (Less) Hot: Extracting Trade-Off Measures for Physically Coupled Amenities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(4), pages 1053-1079.
    4. Susan Williams & Peng Bi & Jonathan Newbury & Guy Robinson & Dino Pisaniello & Arthur Saniotis & Alana Hansen, 2013. "Extreme Heat and Health: Perspectives from Health Service Providers in Rural and Remote Communities in South Australia," IJERPH, MDPI, vol. 10(11), pages 1-19, October.
    5. G. Brooke Anderson & Keith W. Oleson & Bryan Jones & Roger D. Peng, 2018. "Classifying heatwaves: developing health-based models to predict high-mortality versus moderate United States heatwaves," Climatic Change, Springer, vol. 146(3), pages 439-453, February.
    6. Weihua Dong & Zhao Liu & Lijie Zhang & Qiuhong Tang & Hua Liao & Xian'en Li, 2014. "Assessing Heat Health Risk for Sustainability in Beijing’s Urban Heat Island," Sustainability, MDPI, vol. 6(10), pages 1-24, October.
    7. Simon Gosling & Jason Lowe & Glenn McGregor & Mark Pelling & Bruce Malamud, 2009. "Associations between elevated atmospheric temperature and human mortality: a critical review of the literature," Climatic Change, Springer, vol. 92(3), pages 299-341, February.
    8. Fei Li & Tan Yigitcanlar & Madhav Nepal & Kien Nguyen Thanh & Fatih Dur, 2022. "Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review," Energies, MDPI, vol. 15(19), pages 1-34, September.
    9. Sara Wilkinson & Renato Castiglia Feitosa, 2015. "Retrofitting Housing with Lightweight Green Roof Technology in Sydney, Australia, and Rio de Janeiro, Brazil," Sustainability, MDPI, vol. 7(1), pages 1-18, January.
    10. Jae-Ik Kim & Myung-Jin Jun & Chang-Hwan Yeo & Ki-Hyun Kwon & Jun Yong Hyun, 2019. "The Effects of Land Use Zoning and Densification on Changes in Land Surface Temperature in Seoul," Sustainability, MDPI, vol. 11(24), pages 1-14, December.
    11. De Valck, Jeremy & Beames, Alistair & Liekens, Inge & Bettens, Maarten & Seuntjens, Piet & Broekx, Steven, 2019. "Valuing urban ecosystem services in sustainable brownfield redevelopment," Ecosystem Services, Elsevier, vol. 35(C), pages 139-149.
    12. Tao Chen & Anchang Sun & Ruiqing Niu, 2019. "Effect of Land Cover Fractions on Changes in Surface Urban Heat Islands Using Landsat Time-Series Images," IJERPH, MDPI, vol. 16(6), pages 1-18, March.
    13. Sabrina K. Beckmann & Michael Hiete, 2020. "Predictors Associated with Health-Related Heat Risk Perception of Urban Citizens in Germany," IJERPH, MDPI, vol. 17(3), pages 1-11, January.
    14. Vaneckova, Pavla & Beggs, Paul J. & Jacobson, Carol R., 2010. "Spatial analysis of heat-related mortality among the elderly between 1993 and 2004 in Sydney, Australia," Social Science & Medicine, Elsevier, vol. 70(2), pages 293-304, January.
    15. Katherine E. Bishop-Williams & Lea Berrang-Ford & Jan M. Sargeant & David L. Pearl & Shuaib Lwasa & Didacus Bambaiha Namanya & Victoria L. Edge & Ashlee Cunsolo & IHACC Research Team & Bwindi Communit, 2018. "Understanding Weather and Hospital Admissions Patterns to Inform Climate Change Adaptation Strategies in the Healthcare Sector in Uganda," IJERPH, MDPI, vol. 15(11), pages 1-14, October.
    16. Wei Zhang & Phil McManus & Elizabeth Duncan, 2018. "A Raster-Based Subdividing Indicator to Map Urban Heat Vulnerability: A Case Study in Sydney, Australia," IJERPH, MDPI, vol. 15(11), pages 1-20, November.
    17. Maria Papathoma-Koehle & Catrin Promper & Roxana Bojariu & Roxana Cica & András Sik & Kinga Perge & Peter László & Erika Balázs Czikora & Alexandru Dumitrescu & Cosmin Turcus & Marius-Victor Birsan & , 2016. "A common methodology for risk assessment and mapping for south-east Europe: an application for heat wave risk in Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 89-109, May.
    18. Qunshan Zhao & Elizabeth A. Wentz, 2016. "A MODIS/ASTER Airborne Simulator (MASTER) Imagery for Urban Heat Island Research," Data, MDPI, vol. 1(1), pages 1-9, June.
    19. Wenwen Cheng & J. O. Spengler & Robert D. Brown, 2020. "A Comprehensive Model for Estimating Heat Vulnerability of Young Athletes," IJERPH, MDPI, vol. 17(17), pages 1-11, August.
    20. Riyi Li & Yufeng Zhang & Yumeng Cui, 2023. "Assessment of Outdoor Pedestrian Ventilation Performance While Controlling Building Array Scale and Density," Sustainability, MDPI, vol. 15(8), pages 1-27, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:50:y:2009:i:1:p:145-160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.