IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i10d10.1007_s11069-025-07267-3.html
   My bibliography  Save this article

Enhanced rainfall forecasting for Mumbai using data-driven ConvLSTM2D models at fine spatial and temporal scales

Author

Listed:
  • Akshay Sunil

    (Indian Institute of Technology Bombay)

  • Ajay Devda

    (Indian Institute of Technology Bombay)

  • R. Murthy

    (IIT Bombay)

  • B. Deepthi

    (Kerala State Council for Science, Technology and Environment)

Abstract

Forecasting rainfall in tropical areas is challenging due to complex atmospheric behavior, elevated humidity levels, and the common presence of convective rain events. In the Indian context, the difficulty is further exacerbated because of the monsoon intra-seasonal oscillations, which introduce significant variability in rainfall patterns over short periods. Earlier investigations into rainfall prediction leveraged numerical weather prediction methods, along with statistical and deep learning approaches. This study introduces a nuanced approach by deploying a deep learning spatial model aimed at enhancing rainfall prediction accuracy on a finer scale. In this study, we hypothesize that integrating physical understanding improves the precipitation prediction skill of deep learning models with high precision for finer spatial scales, such as cities. To test this hypothesis, we introduce a physics-informed ConvLSTM2D (Convolutional Long Short-Term Memory 2D) model to predict precipitation 6 h and 12 h ahead for Mumbai, India. We utilize ERA-5 reanalysis data with hourly time steps spanning from 2011 to 2022 to select predictor variables, including temperature, potential vorticity, and humidity, across various geopotential levels. The ConvLSTM2D model was trained on the target variable precipitation for 4 different grids representing different spatial grid locations of Mumbai. The Nash–Sutcliffe Efficiency (NSE), utilized to evaluate the precision of 6 and 12 h ahead precipitation forecasts, yielded ranges of 0.61–0.68 for 6-h predictions and 0.58–0.66 for 12-h predictions during the training phase. In the testing phase, the NSE values range from 0.42 to 0.51 for 6-h forecasts and from 0.47 to 0.58 for 12-h forecasts, respectively. These values highlight the model’s high accuracy and its capacity to capture variations. Thus, the use of the ConvLSTM2D model for rainfall prediction, utilizing physics-informed data from specific grids with limited spatial information, reflects current advancements in meteorological research that emphasize both efficiency and localized precision.

Suggested Citation

  • Akshay Sunil & Ajay Devda & R. Murthy & B. Deepthi, 2025. "Enhanced rainfall forecasting for Mumbai using data-driven ConvLSTM2D models at fine spatial and temporal scales," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(10), pages 11931-11956, June.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:10:d:10.1007_s11069-025-07267-3
    DOI: 10.1007/s11069-025-07267-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-025-07267-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-025-07267-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lasse Espeholt & Shreya Agrawal & Casper Sønderby & Manoj Kumar & Jonathan Heek & Carla Bromberg & Cenk Gazen & Rob Carver & Marcin Andrychowicz & Jason Hickey & Aaron Bell & Nal Kalchbrenner, 2022. "Deep learning for twelve hour precipitation forecasts," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Kaifeng Bi & Lingxi Xie & Hengheng Zhang & Xin Chen & Xiaotao Gu & Qi Tian, 2023. "Accurate medium-range global weather forecasting with 3D neural networks," Nature, Nature, vol. 619(7970), pages 533-538, July.
    3. Geert Lenderink & Hayley J. Fowler, 2017. "Understanding rainfall extremes," Nature Climate Change, Nature, vol. 7(6), pages 391-393, June.
    4. Suman Ravuri & Karel Lenc & Matthew Willson & Dmitry Kangin & Remi Lam & Piotr Mirowski & Megan Fitzsimons & Maria Athanassiadou & Sheleem Kashem & Sam Madge & Rachel Prudden & Amol Mandhane & Aidan C, 2021. "Skilful precipitation nowcasting using deep generative models of radar," Nature, Nature, vol. 597(7878), pages 672-677, September.
    5. Ashutosh Kumar & Tanvir Islam & Yoshihide Sekimoto & Chris Mattmann & Brian Wilson, 2020. "Convcast: An embedded convolutional LSTM based architecture for precipitation nowcasting using satellite data," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-18, March.
    6. Kaifeng Bi & Lingxi Xie & Hengheng Zhang & Xin Chen & Xiaotao Gu & Qi Tian, 2023. "Author Correction: Accurate medium-range global weather forecasting with 3D neural networks," Nature, Nature, vol. 621(7980), pages 45-45, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markus Reichstein & Vitus Benson & Jan Blunk & Gustau Camps-Valls & Felix Creutzig & Carina J. Fearnley & Boran Han & Kai Kornhuber & Nasim Rahaman & Bernhard Schölkopf & José María Tárraga & Ricardo , 2025. "Early warning of complex climate risk with integrated artificial intelligence," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    2. He, Jinhua & Hu, Zechun & Wang, Songpo & Mujeeb, Asad & Yang, Pengwei, 2024. "Windformer: A novel 4D high-resolution system for multi-step wind speed vector forecasting based on temporal shifted window multi-head self-attention," Energy, Elsevier, vol. 310(C).
    3. Chu, Yinghao & Wang, Yiling & Yang, Dazhi & Chen, Shanlin & Li, Mengying, 2024. "A review of distributed solar forecasting with remote sensing and deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    4. Fabian Dvorak & Regina Stumpf & Sebastian Fehrler & Urs Fischbacher, 2024. "Generative AI Triggers Welfare-Reducing Decisions in Humans," Papers 2401.12773, arXiv.org.
    5. Song Chen & Jiaxu Liu & Pengkai Wang & Chao Xu & Shengze Cai & Jian Chu, 2024. "Accelerated optimization in deep learning with a proportional-integral-derivative controller," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Yuchen Cai & Jia Yang & Yutang Hou & Feng Wang & Lei Yin & Shuhui Li & Yanrong Wang & Tao Yan & Shan Yan & Xueying Zhan & Jun He & Zhenxing Wang, 2025. "8-bit states in 2D floating-gate memories using gate-injection mode for large-scale convolutional neural networks," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    7. Huaisheng Tu & Haotian Liu & Tuqiang Pan & Wuping Xie & Zihao Ma & Fan Zhang & Pengbai Xu & Leiming Wu & Ou Xu & Yi Xu & Yuwen Qin, 2025. "Deep empirical neural network for optical phase retrieval over a scattering medium," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    8. Lei Chen & Xiaohui Zhong & Hao Li & Jie Wu & Bo Lu & Deliang Chen & Shang-Ping Xie & Libo Wu & Qingchen Chao & Chensen Lin & Zixin Hu & Yuan Qi, 2024. "A machine learning model that outperforms conventional global subseasonal forecast models," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Hu, Rong & Zhou, Kaile & Lu, Xinhui, 2025. "Integrated loads forecasting with absence of crucial factors," Energy, Elsevier, vol. 322(C).
    10. Yingzhe Cui & Ruohan Wu & Xiang Zhang & Ziqi Zhu & Bo Liu & Jun Shi & Junshi Chen & Hailong Liu & Shenghui Zhou & Liang Su & Zhao Jing & Hong An & Lixin Wu, 2025. "Forecasting the eddying ocean with a deep neural network," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    11. Khan, Taimoor & Choi, Chang, 2025. "Attention enhanced dual stream network with advanced feature selection for power forecasting," Applied Energy, Elsevier, vol. 377(PC).
    12. Zhou, Zhen & Gu, Ziyuan & Qu, Xiaobo & Liu, Pan & Liu, Zhiyuan & Yu, Wenwu, 2024. "Urban mobility foundation model: A literature review and hierarchical perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    13. Frank Brückerhoff-Plückelmann & Hendrik Borras & Bernhard Klein & Akhil Varri & Marlon Becker & Jelle Dijkstra & Martin Brückerhoff & C. David Wright & Martin Salinga & Harish Bhaskaran & Benjamin Ris, 2024. "Probabilistic photonic computing with chaotic light," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Mattia Cavaiola & Federico Cassola & Davide Sacchetti & Francesco Ferrari & Andrea Mazzino, 2024. "Hybrid AI-enhanced lightning flash prediction in the medium-range forecast horizon," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Feng, Zhengyuan & Sun, Yuheng & Ning, Jun & Tang, Shoujuan & Liu, Guangxin & Liu, Fangtao & Li, Yang & Shi, Lei, 2025. "Implementing a provincial-level universal daily industrial carbon emissions prediction by fine-tuning the large language model," Applied Energy, Elsevier, vol. 383(C).
    16. Cheng Huang & Pan Mu & Jinglin Zhang & Sixian Chan & Shiqi Zhang & Hanting Yan & Shengyong Chen & Cong Bai, 2025. "Benchmark dataset and deep learning method for global tropical cyclone forecasting," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    17. Florian Achermann & Thomas Stastny & Bogdan Danciu & Andrey Kolobov & Jen Jen Chung & Roland Siegwart & Nicholas Lawrance, 2024. "WindSeer: real-time volumetric wind prediction over complex terrain aboard a small uncrewed aerial vehicle," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Zhenjia Chen & Zhenyuan Lin & Ji Yang & Cong Chen & Di Liu & Liuting Shan & Yuanyuan Hu & Tailiang Guo & Huipeng Chen, 2024. "Cross-layer transmission realized by light-emitting memristor for constructing ultra-deep neural network with transfer learning ability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Wang, Yaqi & Zhao, Xiaomeng & Li, Zheng & Zhu, Wenbo & Gui, Renzhou, 2024. "A novel hybrid model for multi-step-ahead forecasting of wind speed based on univariate data feature enhancement," Energy, Elsevier, vol. 312(C).
    20. Honghui Shang & Chu Guo & Yangjun Wu & Zhenyu Li & Jinlong Yang, 2025. "Solving the many-electron Schrödinger equation with a transformer-based framework," Nature Communications, Nature, vol. 16(1), pages 1-11, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:10:d:10.1007_s11069-025-07267-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.