IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i7d10.1007_s11069-024-06488-2.html
   My bibliography  Save this article

Rapid natural hazard extent estimation from twitter data: investigation for hurricane impact areas

Author

Listed:
  • Janine Florath

    (Karlsruhe Institute of Technology
    Université Grenoble Alpes, CNRS, Grenoble INP)

  • Jocelyn Chanussot

    (Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK)

  • Sina Keller

    (Karlsruhe Institute of Technology)

Abstract

Natural hazards have occurred more frequently in the past years and pose a severe risk to human life. Their extents and, thereby, the most heavily affected areas must be estimated at the earliest to limit damages or initiate rescue services. For such estimations, a widely available data source, which is comparatively responsive to short-time changes, is needed and provided by volunteered geographic information (VGI) data. Tropical cyclones are natural hazard events that can cause enormous spatially extended damage. In this study, we introduce Machine Learning approaches such as Extremely Randomized Tree (ET) and Geographically Weighted Regression for estimating hurricane-impacted regions from VGI data. In addition to the general approximate track extent estimation, we also evaluate the possibilities of temporal estimation of track development from VGI data. Different scenarios are evaluated, and we find that the results mainly depend on the choice of the geographical splits for training and test data for the underlying regression task. Suitable splits lead to $$R^2$$ R 2 of 99% in the best cases with the ET model. The estimation results are satisfying when considering the temporal aspect and represent a use-case scenario. Such a combination of Machine Learning approaches and VGI is a simple and fast approach for early natural hazard estimation.

Suggested Citation

  • Janine Florath & Jocelyn Chanussot & Sina Keller, 2024. "Rapid natural hazard extent estimation from twitter data: investigation for hurricane impact areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(7), pages 6775-6796, May.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:7:d:10.1007_s11069-024-06488-2
    DOI: 10.1007/s11069-024-06488-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06488-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06488-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:plo:pone00:0218454 is not listed on IDEAS
    2. Zheye Wang & Xinyue Ye & Ming-Hsiang Tsou, 2016. "Spatial, temporal, and content analysis of Twitter for wildfire hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 523-540, August.
    3. Xiangyang Guan & Cynthia Chen, 2014. "Using social media data to understand and assess disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 837-850, November.
    4. Eva Regnier, 2008. "Public Evacuation Decisions and Hurricane Track Uncertainty," Management Science, INFORMS, vol. 54(1), pages 16-28, January.
    5. John R. Harrald, 2006. "Agility and Discipline: Critical Success Factors for Disaster Response," The ANNALS of the American Academy of Political and Social Science, , vol. 604(1), pages 256-272, March.
    6. Daniel Seaberg & Laura Devine & Jun Zhuang, 2017. "A review of game theory applications in natural disaster management research," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1461-1483, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabrielle Turner-McGrievy & Amir Karami & Courtney Monroe & Heather M. Brandt, 2020. "Dietary pattern recognition on Twitter: a case example of before, during, and after four natural disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1035-1049, August.
    2. Faxi Yuan & Rui Liu, 2018. "Crowdsourcing for forensic disaster investigations: Hurricane Harvey case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1529-1546, September.
    3. Rachel Samuels & John E. Taylor & Neda Mohammadi, 2020. "Silence of the Tweets: incorporating social media activity drop-offs into crisis detection," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1455-1477, August.
    4. Lydia Novoszel & Tina Wakolbinger, 2022. "Meta-analysis of Supply Chain Disruption Research," SN Operations Research Forum, Springer, vol. 3(1), pages 1-25, March.
    5. Bianca E. Lopez & Nicholas R. Magliocca & Andrew T. Crooks, 2019. "Challenges and Opportunities of Social Media Data for Socio-Environmental Systems Research," Land, MDPI, vol. 8(7), pages 1-18, July.
    6. Martínez-Rojas, María & Pardo-Ferreira, María del Carmen & Rubio-Romero, Juan Carlos, 2018. "Twitter as a tool for the management and analysis of emergency situations: A systematic literature review," International Journal of Information Management, Elsevier, vol. 43(C), pages 196-208.
    7. Yan Wang & John E. Taylor, 2018. "Coupling sentiment and human mobility in natural disasters: a Twitter-based study of the 2014 South Napa Earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 907-925, June.
    8. Sandulika Abesinghe & Nayomi Kankanamge & Tan Yigitcanlar & Surabhi Pancholi, 2023. "Image of a City through Big Data Analytics: Colombo from the Lens of Geo-Coded Social Media Data," Future Internet, MDPI, vol. 15(1), pages 1-21, January.
    9. Yandong Wang & Teng Wang & Xinyue Ye & Jianqi Zhu & Jay Lee, 2015. "Using Social Media for Emergency Response and Urban Sustainability: A Case Study of the 2012 Beijing Rainstorm," Sustainability, MDPI, vol. 8(1), pages 1-17, December.
    10. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    11. Muhammad Ashraf Fauzi, 2023. "Social media in disaster management: review of the literature and future trends through bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 953-975, September.
    12. Andrew B. Martinez, 2020. "Forecast Accuracy Matters for Hurricane Damage," Econometrics, MDPI, vol. 8(2), pages 1-24, May.
    13. S M Nadim Sultan & Keshav Lall Maharjan, 2022. "Cyclone-Induced Disaster Loss Reduction by Social Media: A Case Study on Cyclone Amphan in Koyra Upazila, Khulna District, Bangladesh," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    14. Clemens Havas & Bernd Resch, 2021. "Portability of semantic and spatial–temporal machine learning methods to analyse social media for near-real-time disaster monitoring," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2939-2969, September.
    15. Shaoqing Geng & Yu Gong & Hanping Hou & Jianliang Yang & Bhakti Stephan Onggo, 2024. "Resource management in disaster relief: a bibliometric and content-analysis-based literature review," Annals of Operations Research, Springer, vol. 343(1), pages 263-292, December.
    16. Ji-Wan Lee & Chung-Gil Jung & Jee-Hun Chung & Seong-Joon Kim, 2019. "The relationship among meteorological, agricultural, and in situ news-generated big data on droughts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 765-781, September.
    17. Matteo Iacopini & Carlo R.M.A. Santagiustina, 2021. "Filtering the intensity of public concern from social media count data with jumps," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1283-1302, October.
    18. Crowther, Kenneth G., 2010. "Risk-informed assessment of regional preparedness: A case study of emergency potable water for hurricane response in Southeast Virginia," International Journal of Critical Infrastructure Protection, Elsevier, vol. 3(2), pages 83-98.
    19. Anna Nagurney & Mojtaba Salarpour & June Dong & Ladimer S. Nagurney, 2020. "A Stochastic Disaster Relief Game Theory Network Model," SN Operations Research Forum, Springer, vol. 1(2), pages 1-33, June.
    20. Alfonso J. Pedraza-Martinez & Sameer Hasija & Luk N. Van Wassenhove, 2020. "Fleet Coordination in Decentralized Humanitarian Operations Funded by Earmarked Donations," Operations Research, INFORMS, vol. 68(4), pages 984-999, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:7:d:10.1007_s11069-024-06488-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.