IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i2d10.1007_s11069-023-06237-x.html
   My bibliography  Save this article

Discovery of spatial climate parameters and bioclimatic comfort change simulation in Türkiye under socioeconomic pathway scenarios: A basin-scale case study for urban environments

Author

Listed:
  • Oznur Isinkaralar

    (Kastamonu University)

Abstract

Heat waves and extreme weather events caused by climate change increase people’s need for predictable, healthy, and appropriate thermal thresholds in urban areas. The Mediterranean region, where alarming effects are expected, poses a danger to many species and threatens the quality of human life. In the research, predictions were made according to SSP 245 and SSP 585 scenarios from CNRM-CM6-1 climate models using the data of meteorological stations for 2020 in the Eastern Mediterranean region via CMIP6 and WorldClim database. The study aims to predict the change in the bioclimatic comfort situation of the region at 20-year intervals until 2100, depending on the periods. The highest annual temperatures seen in the area are 18–20 °C. In the 2100 estimations, areas with a value of 22–24 °C according to SSP 245 and 24–26 °C according to SSP 585 are modeled spatially. While the largest area in the basin today is the area with a humidity range of 62–64%, according to SSP 245, in 2100 predictions, the largest area will be 23% with a humidity level of 56–58%. While the wind speed in the area is currently 0.5–1 m/s, it decreases to 0–0.5 m/s in 36% of the area, according to SSP 585. According to the ETv index, quite cool areas are effective on a 36% area surface. However, in the 2100, compared to the SSP 245, the most comprehensive range is the slightly cool areas with 40%. According to SSP 585, mild areas will have a share of 42%. Warm areas, the most critical class of the index, will begin to form. According to DI, the field has a 58% share in the cold class. According to SSP 585, hot areas have a rate of 26%, and comfortable areas have a rate of 52%. Findings of thermal disturbance variation can help develop solutions to conditions in the context of the climatic values of the region.

Suggested Citation

  • Oznur Isinkaralar, 2024. "Discovery of spatial climate parameters and bioclimatic comfort change simulation in Türkiye under socioeconomic pathway scenarios: A basin-scale case study for urban environments," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(2), pages 1809-1819, January.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:2:d:10.1007_s11069-023-06237-x
    DOI: 10.1007/s11069-023-06237-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06237-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06237-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:2:d:10.1007_s11069-023-06237-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.