IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i1d10.1007_s11069-023-06226-0.html
   My bibliography  Save this article

Genetic algorithm-based allocation of LID practices to mitigate urban flooding

Author

Listed:
  • Kyu-Won Seo

    (University of Seoul)

  • Seung Beom Seo

    (University of Seoul)

  • Kyeung-Min Kim

    (Yonsei University)

  • Chan Park

    (University of Seoul)

  • Park Hyemin

    (University of Seoul)

  • Jonghyun Yoo

    (University of Seoul)

Abstract

Urbanization has led to a decrease in infiltration and an increase in surface runoff which intensifies the risk, frequency, and extent of urban flood disasters. Although studies have been conducted to reduce urban flood damage by restoring the natural water cycle and thereby increasing the capacity of low impact development (LID) practices, there are few of them on land-use optimization to reduce surface runoff in urban areas. Thus, this study proposes an optimization approach that reallocates land-use parcels to reduce surface runoff using the genetic algorithm (GA) and the PCSWMM model. Incheon Gyeyang Techno-valley, one of the target districts of the 3rd New Town Project in the Seoul Metropolitan Area, South Korea, was selected as the target site. GA was embedded in the delineated catchment using the PCSWMM scripting tool to relocate land-use planning. Four LID practices, such as green roofs, permeable pavements, bio-retention, and infiltration trenches, were applied to each cell after considering the type of land-use planning. As a result, the rate of peak runoff decreased by 2.16%, 7.09%, and 7.01% under 2-, 10-, and 50-year return period rainfall, respectively. Although the updated land-use plan was not able to dramatically decrease the amount of runoff and peak flow rate, it was found that the relocation of LID practices with limited changes in the land-use plan can mitigate the peak flow rate during storm events in urban areas. Optimized land-use allocation must be considered during the planning stage because the overall capacity of low impact development practices depends on the land-use plan.

Suggested Citation

  • Kyu-Won Seo & Seung Beom Seo & Kyeung-Min Kim & Chan Park & Park Hyemin & Jonghyun Yoo, 2024. "Genetic algorithm-based allocation of LID practices to mitigate urban flooding," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(1), pages 447-462, January.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:1:d:10.1007_s11069-023-06226-0
    DOI: 10.1007/s11069-023-06226-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06226-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06226-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Athiwat Phinyoyang & Suwit Ongsomwang, 2021. "Optimizing Land Use and Land Cover Allocation for Flood Mitigation Using Land Use Change and Hydrological Models with Goal Programming, Chaiyaphum, Thailand," Land, MDPI, vol. 10(12), pages 1-41, November.
    2. Young-Oh Kim & Seung Seo & Ock-Jae Jang, 2012. "Flood risk assessment using regional regression analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 1203-1217, September.
    3. Jingfen Sheng & John Wilson, 2009. "Watershed urbanization and changing flood behavior across the Los Angeles metropolitan region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(1), pages 41-57, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiwen Zheng & Xianqi Zhang & Wenbao Qiao & Ruichao Zhao, 2025. "Emergency Response to Urban Flooding: An Assessment of Mitigation Performance and Cost-Effectiveness in Sponge City Construction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(5), pages 1993-2007, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dorcas Idowu & Wendy Zhou, 2023. "Global Megacities and Frequent Floods: Correlation between Urban Expansion Patterns and Urban Flood Hazards," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    2. Seunghoo Jeong & D. K. Yoon, 2018. "Examining Vulnerability Factors to Natural Disasters with a Spatial Autoregressive Model: The Case of South Korea," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    3. Klaus Eisenack & Rebecca Stecker & Diana Reckien & Esther Hoffmann, 2012. "Adaptation to climate change in the transport sector: a review of actions and actors," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(5), pages 451-469, June.
    4. Bikram Manandhar & Shenghui Cui & Lihong Wang & Sabita Shrestha, 2023. "Urban Flood Hazard Assessment and Management Practices in South Asia: A Review," Land, MDPI, vol. 12(3), pages 1-29, March.
    5. Morteza Miri & Tayeb Raziei & Mehran Zand & Mohammad Reza Kousari, 2023. "Synoptic aspects of two flash flood-inducing heavy rainfalls in southern Iran during 2019–2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2655-2672, February.
    6. Jarbou Bahrawi & Hatem Ewea & Ahmed Kamis & Mohamed Elhag, 2020. "Potential flood risk due to urbanization expansion in arid environments, Saudi Arabia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 795-809, October.
    7. HaiBo Hu, 2016. "Rainstorm flash flood risk assessment using genetic programming: a case study of risk zoning in Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 485-500, August.
    8. Furkan Corapci & Hasan Ozdemir, 2024. "A new approach to flood susceptibility analysis of urbanised alluvial fans: the case of Bursa City (Türkiye)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(14), pages 12909-12932, November.
    9. Mohammad Mojtahedi & Sidney Newton & Jason Meding, 2017. "Predicting the resilience of transport infrastructure to a natural disaster using Cox’s proportional hazards regression model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1119-1133, January.
    10. Hui Xu & Junlong Gao & Xinchun Yu & Qianqian Qin & Shiqiang Du & Jiahong Wen, 2024. "Assessment of Rainstorm Waterlogging Disaster Risk in Rapidly Urbanizing Areas Based on Land Use Scenario Simulation: A Case Study of Jiangqiao Town in Shanghai, China," Land, MDPI, vol. 13(7), pages 1-18, July.
    11. Ashraf Abdelkarim & Ahmed F. D. Gaber & Ibtesam I. Alkadi & Haya M. Alogayell, 2019. "Integrating Remote Sensing and Hydrologic Modeling to Assess the Impact of Land-Use Changes on the Increase of Flood Risk: A Case Study of the Riyadh–Dammam Train Track, Saudi Arabia," Sustainability, MDPI, vol. 11(21), pages 1-32, October.
    12. Deng-Hua Yan & Jing Feng & Chuan-Zhe Li & Tian-Ling Qin & Bai-Sha Weng & Xin Jin, 2012. "General framework and key issues concerning integrated strategies for coping with drought and flood in China in a changing environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 577-592, October.
    13. Hyun Il Choi, 2021. "Development of Flood Damage Regression Models by Rainfall Identification Reflecting Landscape Features in Gangwon Province, the Republic of Korea," Land, MDPI, vol. 10(2), pages 1-14, January.
    14. Guangwei Huang, 2012. "From Confining to Sharing for Sustainable Flood Management," Sustainability, MDPI, vol. 4(7), pages 1-15, June.
    15. N. Zhou & S. Zhao, 2013. "Urbanization process and induced environmental geological hazards in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 797-810, June.
    16. Jui-Sheng Chou & Kuo-Hsin Yang & Min-Yuan Cheng & Wan-Ting Tu, 2013. "Identification and assessment of heavy rainfall–induced disaster potentials in Taipei City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 167-190, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:1:d:10.1007_s11069-023-06226-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.