IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v115y2023i1d10.1007_s11069-022-05551-0.html
   My bibliography  Save this article

Flood hazard assessment and mitigation using a multi-criteria approach in the Sinai Peninsula, Egypt

Author

Listed:
  • Mustafa El-Rawy

    (Minia University
    Shaqra University)

  • Wael M. Elsadek

    (South Valley University)

  • Florimond Smedt

    (Vrije Universiteit Brussel)

Abstract

The Sinai Peninsula in Egypt is highly vulnerable to flash flooding due to its huge variation in relief and erratic rainfall. However, assessing flood risk in the Sinai is a difficult challenge due to the almost complete lack of accurate flood observations and relevant drainage basin characteristics. Therefore, this study evaluates the flood hazard in the Sinai Peninsula through multi-criteria analysis of morphometric characteristics of the drainage patterns, which can be easily inferred from readily available remote sensing data and geographical analysis tools. From a digital elevation model with a spatial resolution of 30 m, 112 catchments are identified, each characterized by twenty morphometric parameters, grouped into three categories: geometry, drainage network and relief. The importance of the morphometric parameters on flooding is assessed with the analytical hierarchy process. Normalized weights for each parameter and category, obtained from pairwise comparison matrices, allow to derive a flood sensitivity index and create a map showing different degrees of flash flood hazard. The results show that basins characterized as highly sensitive to flooding generally have high values for all three morphometric parameter categories: geometry, flow network and relief. About 17% of the Sinai appears to be very highly sensitive to flooding, 39% highly sensitive and 34% moderately sensitive. The very highly flood-prone basins are all located in the southern Sinai mountain ranges, while the highly flood-prone basins are mainly found along the outer edges of the southern Sinai mountain ranges and in some sub-basins of wadi El-Aris. Comparison with case studies reported in other publications and the media shows a strong agreement, indicating that the proposed methodology is reliable and accurate. Based on the obtained flash flood sensitivity map, management plans are proposed to reduce the risk of flash flooding and to protect major cities and roads by installing side channels and culverts to collect and drain the excess water from areas most affected prone to flooding.

Suggested Citation

  • Mustafa El-Rawy & Wael M. Elsadek & Florimond Smedt, 2023. "Flood hazard assessment and mitigation using a multi-criteria approach in the Sinai Peninsula, Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 215-236, January.
  • Handle: RePEc:spr:nathaz:v:115:y:2023:i:1:d:10.1007_s11069-022-05551-0
    DOI: 10.1007/s11069-022-05551-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05551-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05551-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soha A. Mohamed & Mohamed E. El-Raey, 2020. "Vulnerability assessment for flash floods using GIS spatial modeling and remotely sensed data in El-Arish City, North Sinai, Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(2), pages 707-728, June.
    2. Sachchidanand Singh & Pankaj R. Dhote & Praveen K. Thakur & Arpit Chouksey & S. P. Aggarwal, 2021. "Identification of flash-floods-prone river reaches in Beas river basin using GIS-based multi-criteria technique: validation using field and satellite observations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2431-2453, February.
    3. Bosy A. El-Haddad & Ahmed M. Youssef & Hamid R. Pourghasemi & Biswajeet Pradhan & Abdel-Hamid El-Shater & Mohamed H. El-Khashab, 2021. "Flood susceptibility prediction using four machine learning techniques and comparison of their performance at Wadi Qena Basin, Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 83-114, January.
    4. Ahmed A. Elnazer & Salman A. Salman & Ahmed S. Asmoay, 2017. "Flash flood hazard affected Ras Gharib city, Red Sea, Egypt: a proposed flash flood channel," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1389-1400, December.
    5. Omvir Singh & Dinesh Kumar, 2019. "Evaluating the influence of watershed characteristics on flood vulnerability of Markanda River basin in north-west India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 247-268, March.
    6. Chan-juan Li & Yuan-qing Chai & Lin-sheng Yang & Hai-rong Li, 2016. "Spatio-temporal distribution of flood disasters and analysis of influencing factors in Africa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 721-731, May.
    7. Mohammed Sarfaraz Gani Adnan & Ashraf Dewan & Khatun E. Zannat & Abu Yousuf Md Abdullah, 2019. "The use of watershed geomorphic data in flash flood susceptibility zoning: a case study of the Karnaphuli and Sangu river basins of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 425-448, October.
    8. Vikash Shivhare & Chanchal Gupta & Javed Mallick & Chander Kumar Singh, 2022. "Geospatial modelling for sub-watershed prioritization in Western Himalayan Basin using morphometric parameters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 545-561, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alaa Ahmed & Abdullah Alrajhi & Abdulaziz Alquwaizany & Ali Al Maliki & Guna Hewa, 2022. "Flood Susceptibility Mapping Using Watershed Geomorphic Data in the Onkaparinga Basin, South Australia," Sustainability, MDPI, vol. 14(23), pages 1-23, December.
    2. Alaa Ahmed & Guna Hewa & Abdullah Alrajhi, 2021. "Flood susceptibility mapping using a geomorphometric approach in South Australian basins," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 629-653, March.
    3. Yesen Liu & Yaohuan Huang & Jinhong Wan & Zhenshan Yang & Xiaolei Zhang, 2020. "Analysis of Human Activity Impact on Flash Floods in China from 1950 to 2015," Sustainability, MDPI, vol. 13(1), pages 1-12, December.
    4. Muhammad Atiq Ur Rehman Tariq & Cheuk Yin Wai & Nitin Muttil, 2020. "Vulnerability Assessment of Ubiquitous Cities Using the Analytic Hierarchy Process," Future Internet, MDPI, vol. 12(12), pages 1-21, December.
    5. Mohammed Sarfaraz Gani Adnan & Ashraf Dewan & Khatun E. Zannat & Abu Yousuf Md Abdullah, 2019. "The use of watershed geomorphic data in flash flood susceptibility zoning: a case study of the Karnaphuli and Sangu river basins of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 425-448, October.
    6. Weichao Yang & De Hu & Xuelian Jiang & Xuebo Dun & Bingtao Hou & Chuanxing Zheng & Caixia Chen & Rong Zhuang, 2022. "Framework for Spatio-Temporal Distribution of Disasters and Influencing Factors: Exploratory Study of Tianjin, China," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    7. Showmitra Kumar Sarkar & Saifullah Bin Ansar & Khondaker Mohammed Mohiuddin Ekram & Mehedi Hasan Khan & Swapan Talukdar & Mohd Waseem Naikoo & Abu Reza Towfiqul Islam & Atiqur Rahman & Amir Mosavi, 2022. "Developing Robust Flood Susceptibility Model with Small Numbers of Parameters in Highly Fertile Regions of Northwest Bangladesh for Sustainable Flood and Agriculture Management," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    8. Ayse Yavuz Ozalp & Halil Akinci, 2023. "Evaluation of Land Suitability for Olive ( Olea europaea L.) Cultivation Using the Random Forest Algorithm," Agriculture, MDPI, vol. 13(6), pages 1-22, June.
    9. Shi Shen & Changxiu Cheng & Changqing Song & Jing Yang & Shanli Yang & Kai Su & Lihua Yuan & Xiaoqiang Chen, 2018. "Spatial distribution patterns of global natural disasters based on biclustering," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1809-1820, July.
    10. Shan-e-hyder Soomro & Caihong Hu & Muhammad Waseem Boota & Zubair Ahmed & Liu Chengshuai & Han Zhenyue & Li Xiang & Mairaj Hyder Alias Aamir Soomro, 2022. "River Flood Susceptibility and Basin Maturity Analyzed Using a Coupled Approach of Geo-morphometric Parameters and SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2131-2160, May.
    11. Md Shahinoor Rahman & Liping Di, 2020. "A Systematic Review on Case Studies of Remote-Sensing-Based Flood Crop Loss Assessment," Agriculture, MDPI, vol. 10(4), pages 1-30, April.
    12. Victor Ongoma & Haishan Chen & Chujie Gao & Aston Matwai Nyongesa & Francis Polong, 2018. "Future changes in climate extremes over Equatorial East Africa based on CMIP5 multimodel ensemble," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 901-920, January.
    13. Prabal Barua, 2021. "Coping Practices Of Coastal Fishermen In Response To Climate Change For Southern Coastal Belt Of Bangladesh," Social Values & Society (SVS), Zibeline International Publishing, vol. 3(2), pages 74-80, October.
    14. Tiepolo, Maurizio & Galligari, Andrea, 2021. "Urban expansion-flood damage nexus: Evidence from the Dosso Region, Niger," Land Use Policy, Elsevier, vol. 108(C).
    15. Rabia Yahia Meddah & Tarik Ghodbani & Rachida Senouci & Walid Rabehi & Lia Duarte & Ana Cláudia Teodoro, 2023. "Estimation of the Coastal Vulnerability Index Using Multi-Criteria Decision Making: The Coastal Social–Ecological System of Rachgoun, Western Algeria," Sustainability, MDPI, vol. 15(17), pages 1-28, August.
    16. Xue Wu & Xiaomin Sun & Zhaofeng Wang & Yili Zhang & Qionghuan Liu & Binghua Zhang & Basanta Paudel & Fangdi Xie, 2020. "Vegetation Changes and Their Response to Global Change Based on NDVI in the Koshi River Basin of Central Himalayas Since 2000," Sustainability, MDPI, vol. 12(16), pages 1-15, August.
    17. Dan Tran-Thanh & Aprilia Nidia Rinasti & Kavinda Gunasekara & Angsana Chaksan & Makoto Tsukiji, 2022. "GIS and Remote Sensing-Based Approach for Monitoring and Assessment of Plastic Leakage and Pollution Reduction in the Lower Mekong River Basin," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    18. Hang Ha & Chinh Luu & Quynh Duy Bui & Duy-Hoa Pham & Tung Hoang & Viet-Phuong Nguyen & Minh Tuan Vu & Binh Thai Pham, 2021. "Flash flood susceptibility prediction mapping for a road network using hybrid machine learning models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 1247-1270, October.
    19. Irem Sahmutoglu & Alev Taskin & Ertugrul Ayyildiz, 2023. "Assembly area risk assessment methodology for post-flood evacuation by integrated neutrosophic AHP-CODAS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1071-1103, March.
    20. Yves Hategekimana & Lijun Yu & Yueping Nie & Jianfeng Zhu & Fang Liu & Fei Guo, 2018. "Integration of multi-parametric fuzzy analytic hierarchy process and GIS along the UNESCO World Heritage: a flood hazard index, Mombasa County, Kenya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1137-1153, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:115:y:2023:i:1:d:10.1007_s11069-022-05551-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.