IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v110y2022i1d10.1007_s11069-021-04957-6.html
   My bibliography  Save this article

Geospatial modelling for sub-watershed prioritization in Western Himalayan Basin using morphometric parameters

Author

Listed:
  • Vikash Shivhare

    (Quantela Inc)

  • Chanchal Gupta

    (Indian Institute of Science)

  • Javed Mallick

    (King Khalid University)

  • Chander Kumar Singh

    (TERI School of Advanced Studies)

Abstract

Geographical information system and remote sensing are proven to be an efficient tool for locating water harvesting and recharge structures, groundwater potential, runoff, watershed prioritization through morphometric analysis. The management and conservation of watershed require scientific evaluation so that appropriate strategies can be implemented by the policymakers and stakeholders. This study evaluates the Parvati River Basin for prioritization of sub-watershed. We use analytical hierarchical approach with pairwise comparison matrix for ranking the parameters which has been derived through morphometric analysis of the watersheds. The linear (stream order, stream length, mean, stream length, stream length ratio, bifurcation ratio, rho coefficient), relief (basin relief, relief ratio, ruggedness number) and areal morphometric parameters (drainage density, stream frequency, texture ratio, form factor, circulatory ratio, elongation ratio, length of overland flow, constant channel maintenance) have been used for prioritization of watershed in the Basin. The results revealed that the basin comprises of complex topography with mountainous and hilly relief structures which results into high run-off. The prioritization of sub-watershed suggests that the largest watershed comprising of 36.09% total watershed area falls into medium category for water potential. The total area under very high to high category is 5.36% and 8.44% respectively. The relationship between morphometric parameter and watershed prioritization shows that the sub-watersheds SW1 and SW8 falls under very high to high category having high water holding capacity.

Suggested Citation

  • Vikash Shivhare & Chanchal Gupta & Javed Mallick & Chander Kumar Singh, 2022. "Geospatial modelling for sub-watershed prioritization in Western Himalayan Basin using morphometric parameters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 545-561, January.
  • Handle: RePEc:spr:nathaz:v:110:y:2022:i:1:d:10.1007_s11069-021-04957-6
    DOI: 10.1007/s11069-021-04957-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04957-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04957-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neeraj Pant & Rajendra Kumar Dubey & Anand Bhatt & Shive Prakash Rai & Prabhat Semwal & Sumit Mishra, 2020. "Soil erosion and flood hazard zonation using morphometric and morphotectonic parameters in Upper Alaknanda river basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3263-3301, September.
    2. John Wall & DelWayne R. Bohnenstiehl & Karl W. Wegmann & Norman S. Levine, 2017. "Morphometric comparisons between automated and manual karst depression inventories in Apalachicola National Forest, Florida, and Mammoth Cave National Park, Kentucky, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 729-749, January.
    3. Valentina Nikolova & Asparuh Kamburov & Radostina Rizova, 2021. "Morphometric analysis of debris flows basins in the Eastern Rhodopes (Bulgaria) using geospatial technologies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 159-175, January.
    4. María Isabel Arango & Edier Aristizábal & Federico Gómez, 2021. "Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 983-1012, January.
    5. Praveen Thakur & Chalantika Laha & S. Aggarwal, 2012. "River bank erosion hazard study of river Ganga, upstream of Farakka barrage using remote sensing and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 967-987, April.
    6. Swati Maurya & Prashant K. Srivastava & Manika Gupta & Tanvir Islam & Dawei Han, 2016. "Integrating Soil Hydraulic Parameter and Microwave Precipitation with Morphometric Analysis for Watershed Prioritization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5385-5405, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mustafa El-Rawy & Wael M. Elsadek & Florimond Smedt, 2023. "Flood hazard assessment and mitigation using a multi-criteria approach in the Sinai Peninsula, Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 215-236, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dilshad Ahmad & Malika Kanwal & Muhammad Afzal, 2023. "Climate change effects on riverbank erosion Bait community flood-prone area of Punjab, Pakistan: an application of livelihood vulnerability index," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9387-9415, September.
    2. Qianhan Wu & Linghong Ke & Jida Wang & Tamlin M. Pavelsky & George H. Allen & Yongwei Sheng & Xuejun Duan & Yunqiang Zhu & Jin Wu & Lei Wang & Kai Liu & Tan Chen & Wensong Zhang & Chenyu Fan & Bin Yon, 2023. "Satellites reveal hotspots of global river extent change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Nirmal Kumar & Sudhir Kumar Singh, 2021. "Soil erosion assessment using earth observation data in a trans-boundary river basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 1-34, May.
    4. Pawan K. Chaubey & Prashant K. Srivastava & Akhilesh Gupta & R. K. Mall, 2021. "Integrated assessment of extreme events and hydrological responses of Indo-Nepal Gandak River Basin," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8643-8668, June.
    5. Jatan Debnath & Dhrubajyoti Sahariah & Anup Saikia & Gowhar Meraj & Nityaranjan Nath & Durlov Lahon & Wajahat Annayat & Pankaj Kumar & Kesar Chand & Suraj Kumar Singh & Shruti Kanga, 2023. "Shifting Sands: Assessing Bankline Shift Using an Automated Approach in the Jia Bharali River, India," Land, MDPI, vol. 12(3), pages 1-26, March.
    6. Wael Attia & Dina Ragab & Atef M. Abdel-Hamid & Aly M. Marghani & Abdelaziz Elfadaly & Rosa Lasaponara, 2022. "On the Use of Radar and Optical Satellite Imagery for the Monitoring of Flood Hazards on Heritage Sites in Southern Sinai, Egypt," Sustainability, MDPI, vol. 14(9), pages 1-15, May.
    7. Nishat Rayhana Eshita & Mohammad Amir Hossain Bhuiyan & A. H. M. Saadat, 2023. "Recent morphological shifting of Padma River: geoenvironmental and socioeconomic implications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 447-472, May.
    8. Kaustuv Mukherjee & Swades Pal, 2018. "Channel migration zone mapping of the River Ganga in the Diara surrounding region of Eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(5), pages 2181-2203, October.
    9. Shailendra Pratap & Prashant K. Srivastava & Ashish Routray & Tanvir Islam & Rajesh Kumar Mall, 2020. "Appraisal of hydro-meteorological factors during extreme precipitation event: case study of Kedarnath cloudburst, Uttarakhand, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 635-654, January.
    10. Shah Md Atiqul Haq & Khandaker Jafor Ahmed, 2020. "Perceptions about climate change among university students in Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3683-3713, September.
    11. Xichen Che & Liang Jiao & Xuli Zhu & Jingjing Wu & Qian Li, 2023. "Spatial-Temporal Dynamics of Water Conservation in Gannan in the Upper Yellow River Basin of China," Land, MDPI, vol. 12(7), pages 1-18, July.
    12. Nimrabanu Memon & Dhruvesh P. Patel & Naimish Bhatt & Samir B. Patel, 2020. "Integrated framework for flood relief package (FRP) allocation in semiarid region: a case of Rel River flood, Gujarat, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 279-311, January.
    13. Shilpa Suman & Dheeraj Kumar & Anil Kumar, 2022. "Fuzzy Based Convolutional Noise Clustering Classifier to Handle the Noise and Heterogeneity in Image Classification," Mathematics, MDPI, vol. 10(21), pages 1-27, November.
    14. Ana M. Petrović & Stanimir Kostadinov & Ratko Ristić & Ivan Novković & Ivan Radevski, 2023. "The reconstruction of the great 2020 torrential flood in Western Serbia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1673-1688, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:110:y:2022:i:1:d:10.1007_s11069-021-04957-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.