IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v20y2018i5d10.1007_s10668-017-9984-y.html
   My bibliography  Save this article

Channel migration zone mapping of the River Ganga in the Diara surrounding region of Eastern India

Author

Listed:
  • Kaustuv Mukherjee

    (Visva-Bharati)

  • Swades Pal

    (University of Gour Banga)

Abstract

River channel migration is the universal phenomenon that is common in almost all alluvial rivers. The holy River Ganga, the heartbeat of India, is also not an exception in this case. It has shifted its course from time to time. After crossing the Rajmahal hills that is situated in the north-eastern corner of the Chota Nagpur plateau, this main river of India has started its lower course by flowing over the great low-lying flat plain of Bengal. In this flat plain area, the channel migration is a common phenomenon which is observed in the River Ganga also. The study is done in the segment of the Ganga River which is situated in the Diara surrounding area. Diara is a physical cum administrative region of the Malda district of the state of West Bengal of India which occupies an area of almost 900 km2. For the identification of channel migration zone, several methods are used like construction of historical migration zone (HMZ), erosion buffer (EB), avulsion potential zone (APZ), restricted and un-restricted migration area (RMA and UrMA) and retreating migration zone (RMZ). The impact of the channel migration over the villages of the Diara region has also been depicted in this study. Remote Sensing and Geographical Information System (RS–GIS) is used to perform this study by taking the help of historical maps, Survey of India topographical sheets, LANDSAT imageries, etc. The results show that the river has a historical migration zone of 855.55 km2 during 1926–2016 period which is near the entire area of the Diara region (i.e. 900 km2). The construction of EB over the Ganga River for the next 100 years shows that more than half of the area of the Diara region will go under the river bed.

Suggested Citation

  • Kaustuv Mukherjee & Swades Pal, 2018. "Channel migration zone mapping of the River Ganga in the Diara surrounding region of Eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(5), pages 2181-2203, October.
  • Handle: RePEc:spr:endesu:v:20:y:2018:i:5:d:10.1007_s10668-017-9984-y
    DOI: 10.1007/s10668-017-9984-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-017-9984-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-017-9984-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Praveen Thakur & Chalantika Laha & S. Aggarwal, 2012. "River bank erosion hazard study of river Ganga, upstream of Farakka barrage using remote sensing and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 967-987, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dilshad Ahmad & Malika Kanwal & Muhammad Afzal, 2023. "Climate change effects on riverbank erosion Bait community flood-prone area of Punjab, Pakistan: an application of livelihood vulnerability index," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9387-9415, September.
    2. Qianhan Wu & Linghong Ke & Jida Wang & Tamlin M. Pavelsky & George H. Allen & Yongwei Sheng & Xuejun Duan & Yunqiang Zhu & Jin Wu & Lei Wang & Kai Liu & Tan Chen & Wensong Zhang & Chenyu Fan & Bin Yon, 2023. "Satellites reveal hotspots of global river extent change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Vikash Shivhare & Chanchal Gupta & Javed Mallick & Chander Kumar Singh, 2022. "Geospatial modelling for sub-watershed prioritization in Western Himalayan Basin using morphometric parameters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 545-561, January.
    4. Jatan Debnath & Dhrubajyoti Sahariah & Anup Saikia & Gowhar Meraj & Nityaranjan Nath & Durlov Lahon & Wajahat Annayat & Pankaj Kumar & Kesar Chand & Suraj Kumar Singh & Shruti Kanga, 2023. "Shifting Sands: Assessing Bankline Shift Using an Automated Approach in the Jia Bharali River, India," Land, MDPI, vol. 12(3), pages 1-26, March.
    5. Wael Attia & Dina Ragab & Atef M. Abdel-Hamid & Aly M. Marghani & Abdelaziz Elfadaly & Rosa Lasaponara, 2022. "On the Use of Radar and Optical Satellite Imagery for the Monitoring of Flood Hazards on Heritage Sites in Southern Sinai, Egypt," Sustainability, MDPI, vol. 14(9), pages 1-15, May.
    6. Nishat Rayhana Eshita & Mohammad Amir Hossain Bhuiyan & A. H. M. Saadat, 2023. "Recent morphological shifting of Padma River: geoenvironmental and socioeconomic implications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 447-472, May.
    7. Shah Md Atiqul Haq & Khandaker Jafor Ahmed, 2020. "Perceptions about climate change among university students in Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3683-3713, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:20:y:2018:i:5:d:10.1007_s10668-017-9984-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.