IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i7d10.1007_s11069-025-07125-2.html
   My bibliography  Save this article

Multi-hazard vulnerability zone identification using GIS-based fuzzy AHP and MCDM techniques

Author

Listed:
  • Atisha Sood

    (SRM Institute of Science and Technology)

  • K. S. Vignesh

    (SRM Institute of Science and Technology)

  • V. N. Prapanchan

    (Anna University)

Abstract

The increasing frequency and intensity of natural disasters due to climate change and anthropogenic influences necessitate multi-hazard assessments in vulnerable urban areas. This study identifies potential multi-hazard zones in the Greater Chennai Corporation, Tamil Nadu, focusing on flood, cyclone, and tsunami risks. The Fuzzy Analytical Hierarchical Process (FAHP)-based Multi-Criteria Decision Making (MCDM) approach was used to determine potential hazard zones by considering individual hazards previously recorded in the study area. The three estimated hazard zones were combined using the Frequency Ratio (FR) method to calculate the Multi-Hazard Index (MHI), which was then categorized to identify probable multi-hazard zones using a geospatial platform. Various hazard-influencing factors, including topographical, meteorological, and inundation parameters, were considered in the analysis. Accuracy assessment, crucial for reliable LULC classification, showed high overall accuracy. The identified multi-hazard zones were classified into five categories: very High (17 sq. km.), High (139 sq. km.), Moderate (203 sq. km.), Low (61 sq. km.), and Very Low (3.8 sq. km.). The Moderate category exhibited the highest occupancy rate at 47.70%, while the Very Low category had the lowest occupancy rate at 0.80%. To evaluate the precision of the FAHP models, an analysis was conducted using the Receiver Operating Characteristic (ROC) curve method. The results revealed an Area Under the Curve (AUC) of 0.85, 0.82, and 0.83 for flood, cyclone, and tsunami, respectively, signifying superior model efficiency. These results provide valuable insights for policymakers in developing robust strategies for multi-hazard mitigation and disaster resilience planning.

Suggested Citation

  • Atisha Sood & K. S. Vignesh & V. N. Prapanchan, 2025. "Multi-hazard vulnerability zone identification using GIS-based fuzzy AHP and MCDM techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(7), pages 8501-8539, April.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:7:d:10.1007_s11069-025-07125-2
    DOI: 10.1007/s11069-025-07125-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-025-07125-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-025-07125-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sachchidanand Singh & Pankaj R. Dhote & Praveen K. Thakur & Arpit Chouksey & S. P. Aggarwal, 2021. "Identification of flash-floods-prone river reaches in Beas river basin using GIS-based multi-criteria technique: validation using field and satellite observations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2431-2453, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alaa Ahmed & Abdullah Alrajhi & Abdulaziz Alquwaizany & Ali Al Maliki & Guna Hewa, 2022. "Flood Susceptibility Mapping Using Watershed Geomorphic Data in the Onkaparinga Basin, South Australia," Sustainability, MDPI, vol. 14(23), pages 1-23, December.
    2. Mustafa El-Rawy & Wael M. Elsadek & Florimond Smedt, 2023. "Flood hazard assessment and mitigation using a multi-criteria approach in the Sinai Peninsula, Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 215-236, January.
    3. Irem Sahmutoglu & Alev Taskin & Ertugrul Ayyildiz, 2023. "Assembly area risk assessment methodology for post-flood evacuation by integrated neutrosophic AHP-CODAS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1071-1103, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:7:d:10.1007_s11069-025-07125-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.