IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v112y2022i2d10.1007_s11069-022-05247-5.html
   My bibliography  Save this article

Power-law behaviors of the severity levels of unhealthy air pollution events

Author

Listed:
  • Nurulkamal Masseran

    (Universiti Kebangsaan Malaysia)

Abstract

The severity level of air pollution refers to the cumulative effect of unhealthy air pollutant index (API) values during certain air pollution events. High severity levels indicate a negative effect on human health, a disruption in economic activities, and possible disastrous consequences on the environmental ecosystem. This study investigated the power-law behaviors of air pollution events with high severity levels. Three types of power-law models were used to analyze the API data in Klang, Malaysia. The results revealed that the continuous power-law distribution is a reliable model for describing the power-law behaviors that occur in the upper tail of the API distribution. Air pollution events with severity levels greater than a threshold of 1221 were found to exhibit power-law behaviors. On this basis, this study suggest that authorities exercise vigilance with respect to pollution incidents with severity levels exceeding the 1221 threshold.

Suggested Citation

  • Nurulkamal Masseran, 2022. "Power-law behaviors of the severity levels of unhealthy air pollution events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1749-1766, June.
  • Handle: RePEc:spr:nathaz:v:112:y:2022:i:2:d:10.1007_s11069-022-05247-5
    DOI: 10.1007/s11069-022-05247-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05247-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05247-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muhammad Aslam Mohd Safari & Nurulkamal Masseran & Kamarulzaman Ibrahim, 2019. "On the identification of extreme outliers and dragon-kings mechanisms in the upper tail of income distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(10), pages 1886-1902, July.
    2. Gillespie, Colin S., 2015. "Fitting Heavy Tailed Distributions: The poweRlaw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i02).
    3. Bruce Malamud & Donald Turcotte, 1999. "Self-Organized Criticality Applied to Natural Hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 20(2), pages 93-116, November.
    4. Chunshui Lin & Ru-Jin Huang & Darius Ceburnis & Paul Buckley & Jana Preissler & John Wenger & Matteo Rinaldi & Maria Christina Facchini & Colin O’Dowd & Jurgita Ovadnevaite, 2018. "Extreme air pollution from residential solid fuel burning," Nature Sustainability, Nature, vol. 1(9), pages 512-517, September.
    5. Wang, Qizhen, 2019. "Multifractal characterization of air polluted time series in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 167-180.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nurulkamal Masseran & Muhammad Aslam Mohd Safari, 2022. "Statistical Modeling on the Severity of Unhealthy Air Pollution Events in Malaysia," Mathematics, MDPI, vol. 10(16), pages 1-15, August.
    2. Nurulkamal Masseran, 2022. "Multifractal Characteristics on Temporal Maximum of Air Pollution Series," Mathematics, MDPI, vol. 10(20), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Weijie & Li, Baisong & Han, Min, 2020. "A novel Granger causality method based on HSIC-Lasso for revealing nonlinear relationship between multivariate time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    2. Lyócsa, Štefan & Výrost, Tomáš, 2018. "Scale-free distribution of firm-size distribution in emerging economies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 501-505.
    3. Linan Sun & Antao Wang & Jiayao Wang, 2022. "Spatial Characteristics Analysis for Coupling Strength among Air Pollutants during a Severe Haze Period in Zhengzhou, China," IJERPH, MDPI, vol. 19(14), pages 1-19, July.
    4. Li, Xing, 2021. "On the multifractal analysis of air quality index time series before and during COVID-19 partial lockdown: A case study of Shanghai, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    5. Katahira, Kei & Chen, Yu & Akiyama, Eizo, 2021. "Self-organized Speculation Game for the spontaneous emergence of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    6. Pauline Formaglio & Marina E. Wosniack & Raphael M. Tromer & Jaderson G. Polli & Yuri B. Matos & Hang Zhong & Ernesto P. Raposo & Marcos G. E. Luz & Rogerio Amino, 2023. "Plasmodium sporozoite search strategy to locate hotspots of blood vessel invasion," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Joseph L Servadio & Gustavo Machado & Julio Alvarez & Francisco Edilson de Ferreira Lima Júnior & Renato Vieira Alves & Matteo Convertino, 2020. "Information differences across spatial resolutions and scales for disease surveillance and analysis: The case of Visceral Leishmaniasis in Brazil," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-17, July.
    8. Yao, Can-Zhong & Liu, Cheng & Ju, Wei-Jia, 2020. "Multifractal analysis of the WTI crude oil market, US stock market and EPU," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    9. Cura, Robin & Cottineau, Clémentine & Swerts, Elfie & Ignazzi, Cosmo Antonio & Bretagnolle, Anne & Vacchiani-Marcuzzo, Celine & Pumain, Denise, 2017. "The Old and the New: Qualifying City Systems in the World with Classical Models and New Data," SocArXiv pbzn6, Center for Open Science.
    10. repec:wsi:acsxxx:v:21:y:2018:i:08:n:s0219525918500194 is not listed on IDEAS
    11. Ma, Dewei & Ren, Weijie & Han, Min, 2022. "A two-stage causality method for time series prediction based on feature selection and momentary conditional independence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    12. Tiandong Wang & Sidney Resnick, 2023. "Poisson Edge Growth and Preferential Attachment Networks," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-25, March.
    13. Ellen Brooks-Pollock & Leon Danon & Hester Korthals Altes & Jennifer A Davidson & Andrew M T Pollock & Dick van Soolingen & Colin Campbell & Maeve K Lalor, 2020. "A model of tuberculosis clustering in low incidence countries reveals more transmission in the United Kingdom than the Netherlands between 2010 and 2015," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-14, March.
    14. Xue Cui & Lu Yang, 2024. "Systemic risk and idiosyncratic networks among global systemically important banks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 58-75, January.
    15. Kei Katahira & Yu Chen, 2019. "Heterogeneous wealth distribution, round-trip trading and the emergence of volatility clustering in Speculation Game," Papers 1909.03185, arXiv.org.
    16. Liu, Shengli & Liang, Yongtu, 2021. "Statistics of catastrophic hazardous liquid pipeline accidents," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    17. Brennen T. Fagan & Marina I. Knight & Niall J. MacKay & A. Jamie Wood, 2020. "Change point analysis of historical battle deaths," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 909-933, June.
    18. Mike Thelwall, 2016. "Interpreting correlations between citation counts and other indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(1), pages 337-347, July.
    19. Jones, Jason J., 2021. "A Dataset for the Study of Identity at Scale: Annual Prevalence of American Twitter Users with specified Token in their Profile Bio - 2015-2020," SocArXiv cm5g7, Center for Open Science.
    20. David Agogo, 2021. "Invisible market for online personal data: An examination," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(4), pages 989-1010, December.
    21. I. Georgoudas & G. Sirakoulis & E. Scordilis & I. Andreadis, 2009. "On-chip earthquake simulation model using potentials," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(3), pages 519-537, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:112:y:2022:i:2:d:10.1007_s11069-022-05247-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.