IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v109y2021i1d10.1007_s11069-021-04834-2.html
   My bibliography  Save this article

Aggravation of debris flow disaster by extreme climate and engineering: a case study of the Tongzilin Gully, Southwestern Sichuan Province, China

Author

Listed:
  • Zheng Zhong

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Ningsheng Chen

    (Chinese Academy of Sciences
    Academy of Plateau Science and Sustainability)

  • Guisheng Hu

    (Chinese Academy of Sciences
    Academy of Plateau Science and Sustainability)

  • Zheng Han

    (Central South University)

  • Huayong Ni

    (China Geological Survey)

Abstract

A large-scale debris flow occurred in Tongzilin Gully in Puge County, Sichuan Province in southwestern China from 4:00 a.m. to 4:30 a.m. on August 8, 2017. Although early warning measures were taken before the occurrence of the debris flow, the disaster resulted in 25 fatalities, the destruction of 71 houses, and economic losses amounting to 160 million RMB. This study aimed to analyze the movement characteristics of the debris flow, reveal the cause and mechanism of the catastrophe, and assist in avoiding similar future disasters. To this end, we calculated the debris flow density, velocity, and peak discharge and analyzed the dynamic characteristics of the debris flow. The distributions of regional precipitation and solid materials were also determined to analyze the formation conditions. Moreover, the debris flow blockage and disaster amplification mechanisms were investigated through field surveys, remote sensing images, and parameter calculation. The results show that the debris flow was a low-frequency turbulent event with a peak flow rate of once in a hundred years and an average velocity of 6.34 m/s. The debris flow developed under unique conditions, corresponding to the combined action of natural and anthropogenic factors. First, the low-frequency debris flow was initiated by antecedent drought and short-term heavy rainfall. The antecedent drought increased the amount of loose materials in the watershed (141.5 × 104 m3). The antecedent drought and short-term heavy rainfall nearly doubled the scale of the debris flow. Second, coarse particles blocked road culverts in the study area, leading to overflow and exacerbating the disaster. Consequently, the affected area and scale of the debris flow have been enlarged by 25% and by two times, respectively. The study findings provide deeper insight into the initiation and development mechanisms of debris flow disasters in mountainous areas, which may help improve the monitoring, early warning, and forecasting system.

Suggested Citation

  • Zheng Zhong & Ningsheng Chen & Guisheng Hu & Zheng Han & Huayong Ni, 2021. "Aggravation of debris flow disaster by extreme climate and engineering: a case study of the Tongzilin Gully, Southwestern Sichuan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 237-253, October.
  • Handle: RePEc:spr:nathaz:v:109:y:2021:i:1:d:10.1007_s11069-021-04834-2
    DOI: 10.1007/s11069-021-04834-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04834-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04834-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Wang, 2013. "Lessons learned from protective measures associated with the 2010 Zhouqu debris flow disaster in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1835-1847, December.
    2. Huayong Ni & Wanmo Zheng & Zongliang Li & Renji Ba, 2010. "Recent catastrophic debris flows in Luding county, SW China: geological hazards, rainfall analysis and dynamic characteristics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(2), pages 523-542, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Ye, 2022. "Remote Sensing Approaches for Meteorological Disaster Monitoring: Recent Achievements and New Challenges," IJERPH, MDPI, vol. 19(6), pages 1-28, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Emdad Haque & Mahed-Ul-Islam Choudhury & Md. Sowayib Sikder, 2019. "“Events and failures are our only means for making policy changes”: learning in disaster and emergency management policies in Manitoba, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(1), pages 137-162, August.
    2. Han-Chung Yang & Cheng-Wu Chen, 2012. "Potential hazard analysis from the viewpoint of flow measurement in large open-channel junctions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 803-813, March.
    3. Zheng Wang & Ningsheng Chen & Guisheng Hu & Yong Zhang & Genxu Wang & Zheng Han, 2023. "Hydrometeorological triggering of periglacial debris flows using a Bayesian approach: a case study of the Hailuogou Gully region, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2871-2888, April.
    4. Ning Bao & Jian-feng Chen & Rui Sun, 2023. "A simplified method to estimate the distribution of lateral forces acting on stabilizing piles in c–φ soil slopes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1321-1347, June.
    5. Yao Shunyu & Nazir Ahmed Bazai & Tang Jinbo & Jiang Hu & Yi Shujian & Zou Qiang & Tashfain Ahmed & Guo Jian, 2022. "Dynamic process of a typical slope debris flow: a case study of the wujia gully, Zengda, Sichuan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 565-586, May.
    6. Chen Cao & Peihua Xu & Jianping Chen & Lianjing Zheng & Cencen Niu, 2016. "Hazard Assessment of Debris-Flow along the Baicha River in Heshigten Banner, Inner Mongolia, China," IJERPH, MDPI, vol. 14(1), pages 1-19, December.
    7. Jia Li & Xia Wang & Haixia Jia & Yang Liu & Yunfei Zhao & Changming Shi & Furong Zhang, 2022. "Effect of herbaceous plant root density on slope stability in a shallow landslide-prone area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2337-2360, July.
    8. Wen Zhang & Jian-ping Chen & Qing Wang & Yuke An & Xin Qian & Liangjun Xiang & Longxiang He, 2013. "Susceptibility analysis of large-scale debris flows based on combination weighting and extension methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1073-1100, March.
    9. He, Songtang & Wang, Daojie & Zhao, Peng & Li, Yong & Lan, Huijuan & Chen, Wenle & Jamali, Ali Akbar, 2020. "A review and prospects of debris flow waste-shoal land use in typical debris flow areas, China," Land Use Policy, Elsevier, vol. 99(C).
    10. H. Ni & W. Zheng & Y. Tie & P. Su & Y. Tang & R. Xu & D. Wang & X. Chen, 2012. "Formation and characteristics of post-earthquake debris flow: a case study from Wenjia gully in Mianzhu, Sichuan, SW China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 317-335, March.
    11. Chunliu Gao & Deqiang Cheng & Javed Iqbal & Shunyu Yao, 2023. "Spatiotemporal Change Analysis and Prediction of the Great Yellow River Region (GYRR) Land Cover and the Relationship Analysis with Mountain Hazards," Land, MDPI, vol. 12(2), pages 1-24, January.
    12. Mahdi Motagh & Hossein Akhani, 2023. "The cascading failure of check dam systems during the 28 July 2022 Emamzadeh Davood flood in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 4051-4057, April.
    13. Liuqun Dong, 2023. "Energy consumption analysis of the granular run-out process: effect of particle shape and slope angle," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1673-1687, June.
    14. Yuzheng Wang & Lei Nie & Min Zhang & Hong Wang & Yan Xu & Tianyu Zuo, 2020. "Assessment of Debris Flow Risk Factors Based on Meta-Analysis—Cases Study of Northwest and Southwest China," Sustainability, MDPI, vol. 12(17), pages 1-24, August.
    15. H. Chen & L. Zhang & D. Chang & S. Zhang, 2012. "Mechanisms and runout characteristics of the rainfall-triggered debris flow in Xiaojiagou in Sichuan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 1037-1057, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:109:y:2021:i:1:d:10.1007_s11069-021-04834-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.