IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v87y2024i1d10.1007_s00184-023-00903-7.html
   My bibliography  Save this article

Estimation and bootstrap for stochastically monotone Markov processes

Author

Listed:
  • Michael H. Neumann

    (Friedrich-Schiller-Universität Jena)

Abstract

The Markov property is shared by several popular models for time series such as autoregressive or integer-valued autoregressive processes as well as integer-valued ARCH processes. A natural assumption which is fulfilled by corresponding parametric versions of these models is that the random variable at time t gets stochastically greater conditioned on the past, as the value of the random variable at time $$t-1$$ t - 1 increases. Then the associated family of conditional distribution functions has a certain monotonicity property which allows us to employ a nonparametric antitonic estimator. This estimator does not involve any tuning parameter which controls the degree of smoothing and is therefore easy to apply. Nevertheless, it is shown that it attains a rate of convergence which is known to be optimal in similar cases. This estimator forms the basis for a new method of bootstrapping Markov chains which inherits the properties of simplicity and consistency from the underlying estimator of the conditional distribution function.

Suggested Citation

  • Michael H. Neumann, 2024. "Estimation and bootstrap for stochastically monotone Markov processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(1), pages 31-59, January.
  • Handle: RePEc:spr:metrik:v:87:y:2024:i:1:d:10.1007_s00184-023-00903-7
    DOI: 10.1007/s00184-023-00903-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-023-00903-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-023-00903-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leucht, Anne & Neumann, Michael H., 2013. "Dependent wild bootstrap for degenerate U- and V-statistics," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 257-280.
    2. M. Rajarshi, 1990. "Bootstrap in Markov-sequences based on estimates of transition density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(2), pages 253-268, June.
    3. Michael H. Neumann, 2021. "Bootstrap for integer‐valued GARCH(p, q) processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 343-363, August.
    4. Dehling, H. & Mikosch, T., 1994. "Random Quadratic Forms and the Bootstrap for U-Statistics," Journal of Multivariate Analysis, Elsevier, vol. 51(2), pages 392-413, November.
    5. Anne Leucht & Jens-Peter Kreiss & Michael H. Neumann, 2015. "A Model Specification Test For GARCH(1,1) Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1167-1193, December.
    6. Bradley, Richard C., 1981. "Central limit theorems under weak dependence," Journal of Multivariate Analysis, Elsevier, vol. 11(1), pages 1-16, March.
    7. Leucht, Anne & Neumann, Michael H., 2009. "Consistency of general bootstrap methods for degenerate U-type and V-type statistics," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1622-1633, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leucht, Anne & Neumann, Michael H. & Kreiss, Jens-Peter, 2013. "A model specification test for GARCH(1,1) processes," Working Papers 13-11, University of Mannheim, Department of Economics.
    2. Michael H. Neumann, 2021. "Bootstrap for integer‐valued GARCH(p, q) processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 343-363, August.
    3. Dehling, Herold & Sharipov, Olimjon Sh. & Wendler, Martin, 2015. "Bootstrap for dependent Hilbert space-valued random variables with application to von Mises statistics," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 200-215.
    4. Anne Leucht & Jens-Peter Kreiss & Michael H. Neumann, 2015. "A Model Specification Test For GARCH(1,1) Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1167-1193, December.
    5. Inass Soukarieh & Salim Bouzebda, 2022. "Exchangeably Weighted Bootstraps of General Markov U -Process," Mathematics, MDPI, vol. 10(20), pages 1-42, October.
    6. Anne Leucht & Michael Neumann, 2013. "Degenerate $$U$$ - and $$V$$ -statistics under ergodicity: asymptotics, bootstrap and applications in statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 349-386, April.
    7. Bahraoui Tarik & Bouezmarni Taoufik & Quessy Jean-François, 2018. "Testing the symmetry of a dependence structure with a characteristic function," Dependence Modeling, De Gruyter, vol. 6(1), pages 331-355, December.
    8. Wan, Phyllis & Davis, Richard A., 2022. "Goodness-of-fit testing for time series models via distance covariance," Journal of Econometrics, Elsevier, vol. 227(1), pages 4-24.
    9. Eric Beutner & Julia Schaumburg & Barend Spanjers, 2024. "Bootstrapping GARCH Models Under Dependent Innovations," Tinbergen Institute Discussion Papers 24-008/III, Tinbergen Institute.
    10. Pan, Li & Politis, Dimitris, 2014. "Bootstrap prediction intervals for Markov processes," University of California at San Diego, Economics Working Paper Series qt7555757g, Department of Economics, UC San Diego.
    11. Manzan, S. & Zerom, D., 2005. "A Multi-Step Forecast Density," CeNDEF Working Papers 05-05, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    12. Sherman, Michael & Carlstein, Edward, 2004. "Confidence intervals based on estimators with unknown rates of convergence," Computational Statistics & Data Analysis, Elsevier, vol. 46(1), pages 123-139, May.
    13. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Paul Doukhan & Gabriel Lang & Anne Leucht & Michael H. Neumann, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 290-314, May.
    14. Meintanis, S.G. & Milošević, B. & Jiménez–Gamero, M.D., 2024. "Goodness–of–fit tests based on the min–characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    15. Jiménez-Gamero, M. Dolores & Kim, Hyoung-Moon, 2015. "Fast goodness-of-fit tests based on the characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 172-191.
    16. Soukarieh, Inass & Bouzebda, Salim, 2023. "Renewal type bootstrap for increasing degree U-process of a Markov chain," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    17. Quessy, Jean-François, 2021. "A Szekely–Rizzo inequality for testing general copula homogeneity hypotheses," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    18. Chu, Ba, 2023. "A distance-based test of independence between two multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    19. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Inference for extremal regression with dependent heavy-tailed data," TSE Working Papers 22-1324, Toulouse School of Economics (TSE), revised 29 Aug 2023.
    20. Alexander Varypaev, 2024. "Asymptotic Form of the Covariance Matrix of Likelihood-Based Estimator in Multidimensional Linear System Model for the Case of Infinity Number of Nuisance Parameters," Mathematics, MDPI, vol. 12(3), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:87:y:2024:i:1:d:10.1007_s00184-023-00903-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.