IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v27y2025i2d10.1007_s11009-025-10150-0.html
   My bibliography  Save this article

A Speed-based Estimator of Signal-to-Noise Ratios

Author

Listed:
  • Yuang Song

    (Columbia University)

  • Olympia Hadjiliadis

    (CUNY-Hunter College)

Abstract

We present an innovative method to measure the signal-to-noise ratio (SNR) in a Brownian motion model. That is, the ratio of the mean to the standard deviation of the Brownian motion. Our method is based on the method of moments estimation of the drawdown and drawup speeds in a Brownian motion model, where the drawdown process is defined as the current drop of the process from its running maximum and the drawup process is the current rise of the process above its running minimum. The speed of a drawdown of K units (or a drawup of K units) is then the time between the last maximum (or minimum) of the process and the time the drawdown (or drawup) process hits the threshold K. Our estimator only requires the record values of the process and the times at which deviations from the record values exceed a certain threshold, whereas the uniformly minimum-variance unbiased estimator (UMVUE) requires the entire path of the process. We derive the asymptotic distributions of both estimators and compare them.

Suggested Citation

  • Yuang Song & Olympia Hadjiliadis, 2025. "A Speed-based Estimator of Signal-to-Noise Ratios," Methodology and Computing in Applied Probability, Springer, vol. 27(2), pages 1-15, June.
  • Handle: RePEc:spr:metcap:v:27:y:2025:i:2:d:10.1007_s11009-025-10150-0
    DOI: 10.1007/s11009-025-10150-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-025-10150-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-025-10150-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    2. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    3. Yang, Dennis & Zhang, Qiang, 2000. "Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices," The Journal of Business, University of Chicago Press, vol. 73(3), pages 477-491, July.
    4. Hongzhong Zhang & Olympia Hadjiliadis, 2012. "Drawdowns and the Speed of Market Crash," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 739-752, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsayed, Ahmed H. & Asutay, Mehmet & ElAlaoui, Abdelkader O. & Bin Jusoh, Hashim, 2024. "Volatility spillover across spot and futures markets: Evidence from dual financial system," Research in International Business and Finance, Elsevier, vol. 71(C).
    2. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
    3. Min Zhang & Adam W. Kolkiewicz & Tony S. Wirjanto & Xindan Li, 2013. "The Impacts of Financial Crisis on Sovereign Credit Risk Analysis in Asia and Europe," Working Paper series 62_13, Rimini Centre for Economic Analysis.
    4. Thierry Chauveau & Sylvain Friederich & Jérôme Héricourt & Emmanuel Jurczenko & Catherine Lubochinsky & Bertrand Maillet & Christophe Moussu & Bogdan Négréa & Hélène Raymond-Feingold, 2004. "La volatilité des marchés augmente-t-elle ?," Revue d'Économie Financière, Programme National Persée, vol. 74(1), pages 17-44.
    5. Richard Gerlach & Declan Walpole & Chao Wang, 2017. "Semi-parametric Bayesian tail risk forecasting incorporating realized measures of volatility," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 199-215, February.
    6. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    7. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    8. Muneer Shaik & S. Maheswaran, 2020. "A new unbiased additive robust volatility estimation using extreme values of asset prices," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 313-347, September.
    9. Caporale, Guglielmo Maria & Gil-Alana, Luis A. & Poza, Carlos, 2020. "High and low prices and the range in the European stock markets: A long-memory approach," Research in International Business and Finance, Elsevier, vol. 52(C).
    10. Lakshmi Padmakumari & S Maheswaran, 2016. "A Regression Based Approach to Capturing the Level Dependence in the Volatility of Stock Returns," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 6(12), pages 706-718, December.
    11. Chou, Ray Yeutien & Liu, Nathan, 2010. "The economic value of volatility timing using a range-based volatility model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2288-2301, November.
    12. Chou, Ray Yeutien & Cai, Yijie, 2009. "Range-based multivariate volatility model with double smooth transition in conditional correlation," Global Finance Journal, Elsevier, vol. 20(2), pages 137-152.
    13. Tan, Shay-Kee & Ng, Kok-Haur & Chan, Jennifer So-Kuen & Mohamed, Ibrahim, 2019. "Quantile range-based volatility measure for modelling and forecasting volatility using high frequency data," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 537-551.
    14. De Nard, Gianluca & Engle, Robert F. & Ledoit, Olivier & Wolf, Michael, 2022. "Large dynamic covariance matrices: Enhancements based on intraday data," Journal of Banking & Finance, Elsevier, vol. 138(C).
    15. Rodrigo A. Alfaro & Carmen Gloria Silva, 2008. "Volatilidad de Indices Accionarios: El caso del IPSA," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 45(132), pages 217-233.
    16. Yan-Leung Cheung & Yin-Wong Cheung & Alan T. K. Wan, 2009. "A high-low model of daily stock price ranges," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 103-119.
    17. Lam, K.P. & Ng, H.S., 2009. "Intra-daily information of range-based volatility for MEM-GARCH," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2625-2632.
    18. Stefano Lovo & Philippe Raimbourg & Federica Salvadè, 2022. "Credit rating agencies, information asymmetry and US bond liquidity," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 49(9-10), pages 1863-1896, October.
    19. Zitis, Pavlos I. & Contoyiannis, Yiannis & Potirakis, Stelios M., 2022. "Critical dynamics related to a recent Bitcoin crash," International Review of Financial Analysis, Elsevier, vol. 84(C).
    20. Parthajit Kayal & Sumanjay Dutta & Vipul Khandelwal & Rakesh Nigam, 2021. "Information Theoretic Ranking of Extreme Value Returns," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:27:y:2025:i:2:d:10.1007_s11009-025-10150-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.