IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v92y2020i3d10.1007_s00186-020-00723-9.html
   My bibliography  Save this article

On the facet defining inequalities of the mixed-integer bilinear covering set

Author

Listed:
  • Hamidur Rahman

    (Indian Institute of Technology Bombay)

  • Ashutosh Mahajan

    (Indian Institute of Technology Bombay)

Abstract

We study the facet defining inequalities of the convex hull of a mixed-integer bilinear covering arising in trim-loss (or cutting stock) problem under the framework of disjunctive cuts. We show that all of them can be derived using a disjunctive procedure. Some of these are split cuts of rank one for a convex mixed-integer relaxation of the covering set, while others have rank at least two. For certain linear objective functions, the rank-one split cuts are shown to be sufficient for finding the optimal value over the convex hull of the covering set. A relaxation of the trim-loss problem has this property, and our computational results show that these rank-one inequalities find the lower bound quickly.

Suggested Citation

  • Hamidur Rahman & Ashutosh Mahajan, 2020. "On the facet defining inequalities of the mixed-integer bilinear covering set," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(3), pages 545-575, December.
  • Handle: RePEc:spr:mathme:v:92:y:2020:i:3:d:10.1007_s00186-020-00723-9
    DOI: 10.1007/s00186-020-00723-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-020-00723-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-020-00723-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamidur Rahman & Ashutosh Mahajan, 2019. "Facets of a mixed-integer bilinear covering set with bounds on variables," Journal of Global Optimization, Springer, vol. 74(3), pages 417-442, July.
    2. R. C. Jeroslow, 1973. "There Cannot be any Algorithm for Integer Programming with Quadratic Constraints," Operations Research, INFORMS, vol. 21(1), pages 221-224, February.
    3. François Vanderbeck, 2000. "Exact Algorithm for Minimising the Number of Setups in the One-Dimensional Cutting Stock Problem," Operations Research, INFORMS, vol. 48(6), pages 915-926, December.
    4. Harjunkoski, Iiro & Westerlund, Tapio & Porn, Ray & Skrifvars, Hans, 1998. "Different transformations for solving non-convex trim-loss problems by MINLP," European Journal of Operational Research, Elsevier, vol. 105(3), pages 594-603, March.
    5. Umetani, Shunji & Yagiura, Mutsunori & Ibaraki, Toshihide, 2003. "One-dimensional cutting stock problem to minimize the number of different patterns," European Journal of Operational Research, Elsevier, vol. 146(2), pages 388-402, April.
    6. NEMHAUSER, George L. & WOLSEY, Laurence A., 1990. "A recursive procedure to generate all cuts for 0-1 mixed integer programs," LIDAM Reprints CORE 894, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Santanu S. Dey & Quentin Louveaux, 2011. "Split Rank of Triangle and Quadrilateral Inequalities," Mathematics of Operations Research, INFORMS, vol. 36(3), pages 432-461, August.
    8. Gau, T. & Wascher, G., 1995. "CUTGEN1: A problem generator for the standard one-dimensional cutting stock problem," European Journal of Operational Research, Elsevier, vol. 84(3), pages 572-579, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamidur Rahman & Ashutosh Mahajan, 2019. "Facets of a mixed-integer bilinear covering set with bounds on variables," Journal of Global Optimization, Springer, vol. 74(3), pages 417-442, July.
    2. Mateus Martin & Horacio Hideki Yanasse & Luiz Leduíno Salles-Neto, 2022. "Pattern-based ILP models for the one-dimensional cutting stock problem with setup cost," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 557-582, August.
    3. Cui, Yaodong & Zhong, Cheng & Yao, Yi, 2015. "Pattern-set generation algorithm for the one-dimensional cutting stock problem with setup cost," European Journal of Operational Research, Elsevier, vol. 243(2), pages 540-546.
    4. Hajizadeh, Iman & Lee, Chi-Guhn, 2007. "Alternative configurations for cutting machines in a tube cutting mill," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1385-1396, December.
    5. Silva, Eduardo M. & Melega, Gislaine M. & Akartunalı, Kerem & de Araujo, Silvio A., 2023. "Formulations and theoretical analysis of the one-dimensional multi-period cutting stock problem with setup cost," European Journal of Operational Research, Elsevier, vol. 304(2), pages 443-460.
    6. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    7. C Alves & J M Valério de Carvalho, 2008. "New integer programming formulations and an exact algorithm for the ordered cutting stock problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1520-1531, November.
    8. Kelly Cristina Poldi & Silvio Alexandre Araujo, 2016. "Mathematical models and a heuristic method for the multiperiod one-dimensional cutting stock problem," Annals of Operations Research, Springer, vol. 238(1), pages 497-520, March.
    9. Aktin, Tülin & Özdemir, RIfat Gürcan, 2009. "An integrated approach to the one-dimensional cutting stock problem in coronary stent manufacturing," European Journal of Operational Research, Elsevier, vol. 196(2), pages 737-743, July.
    10. Hadj Salem, Khadija & Silva, Elsa & Oliveira, José Fernando & Carravilla, Maria Antónia, 2023. "Mathematical models for the two-dimensional variable-sized cutting stock problem in the home textile industry," European Journal of Operational Research, Elsevier, vol. 306(2), pages 549-566.
    11. Kallrath, Julia & Rebennack, Steffen & Kallrath, Josef & Kusche, Rüdiger, 2014. "Solving real-world cutting stock-problems in the paper industry: Mathematical approaches, experience and challenges," European Journal of Operational Research, Elsevier, vol. 238(1), pages 374-389.
    12. Kelly Poldi & Silvio Araujo, 2016. "Mathematical models and a heuristic method for the multiperiod one-dimensional cutting stock problem," Annals of Operations Research, Springer, vol. 238(1), pages 497-520, March.
    13. Gislaine Mara Melega & Silvio Alexandre de Araujo & Reinaldo Morabito, 2020. "Mathematical model and solution approaches for integrated lot-sizing, scheduling and cutting stock problems," Annals of Operations Research, Springer, vol. 295(2), pages 695-736, December.
    14. Umetani, Shunji & Yagiura, Mutsunori & Ibaraki, Toshihide, 2003. "One-dimensional cutting stock problem to minimize the number of different patterns," European Journal of Operational Research, Elsevier, vol. 146(2), pages 388-402, April.
    15. Cui, Yaodong & Yang, Liu & Zhao, Zhigang & Tang, Tianbing & Yin, Mengxiao, 2013. "Sequential grouping heuristic for the two-dimensional cutting stock problem with pattern reduction," International Journal of Production Economics, Elsevier, vol. 144(2), pages 432-439.
    16. Malaguti, Enrico & Medina Durán, Rosa & Toth, Paolo, 2014. "Approaches to real world two-dimensional cutting problems," Omega, Elsevier, vol. 47(C), pages 99-115.
    17. Alberto Del Pia & Robert Weismantel, 2016. "Relaxations of mixed integer sets from lattice-free polyhedra," Annals of Operations Research, Springer, vol. 240(1), pages 95-117, May.
    18. François Clautiaux & Cláudio Alves & José Valério de Carvalho, 2010. "A survey of dual-feasible and superadditive functions," Annals of Operations Research, Springer, vol. 179(1), pages 317-342, September.
    19. Wang, Danni & Xiao, Fan & Zhou, Lei & Liang, Zhe, 2020. "Two-dimensional skiving and cutting stock problem with setup cost based on column-and-row generation," European Journal of Operational Research, Elsevier, vol. 286(2), pages 547-563.
    20. Ramiro Varela & Camino Vela & Jorge Puente & María Sierra & Inés González-Rodríguez, 2009. "An effective solution for a real cutting stock problem in manufacturing plastic rolls," Annals of Operations Research, Springer, vol. 166(1), pages 125-146, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:92:y:2020:i:3:d:10.1007_s00186-020-00723-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.