IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v85y2017i1d10.1007_s00186-016-0561-1.html
   My bibliography  Save this article

An inexact proximal regularization method for unconstrained optimization

Author

Listed:
  • Paul Armand

    (XLIM Laboratory – University of Limoges)

  • Isaï Lankoandé

    (XLIM Laboratory – University of Limoges)

Abstract

We present a regularization algorithm to solve a smooth unconstrained minimization problem.This algorithm is suitable to solve a degenerate problem, when the Hessian is singular at a local optimal solution. The main feature of our algorithm is that it uses an outer/inner iteration scheme. We show that the algorithm has a strong global convergence property under mild assumptions. A local convergence analysis shows that the algorithm is superlinearly convergent under a local error bound condition. Some numerical experiments are reported.

Suggested Citation

  • Paul Armand & Isaï Lankoandé, 2017. "An inexact proximal regularization method for unconstrained optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(1), pages 43-59, February.
  • Handle: RePEc:spr:mathme:v:85:y:2017:i:1:d:10.1007_s00186-016-0561-1
    DOI: 10.1007/s00186-016-0561-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-016-0561-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-016-0561-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Marc Fuentes & Jérôme Malick & Claude Lemaréchal, 2012. "Descentwise inexact proximal algorithms for smooth optimization," Computational Optimization and Applications, Springer, vol. 53(3), pages 755-769, December.
    2. Hande Benson & David Shanno, 2014. "Interior-point methods for nonconvex nonlinear programming: cubic regularization," Computational Optimization and Applications, Springer, vol. 58(2), pages 323-346, June.
    3. Nicholas Gould & Dominique Orban & Philippe Toint, 2015. "CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization," Computational Optimization and Applications, Springer, vol. 60(3), pages 545-557, April.
    4. Paul Armand & Joël Benoist & Riadh Omheni & Vincent Pateloup, 2014. "Study of a primal-dual algorithm for equality constrained minimization," Computational Optimization and Applications, Springer, vol. 59(3), pages 405-433, December.
    5. Ying-Jie Li & Dong-Hui Li, 2009. "Truncated regularized Newton method for convex minimizations," Computational Optimization and Applications, Springer, vol. 43(1), pages 119-131, May.
    6. Kenji Ueda & Nobuo Yamashita, 2014. "A regularized Newton method without line search for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 59(1), pages 321-351, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul Armand & Ngoc Nguyen Tran, 2021. "Local Convergence Analysis of a Primal–Dual Method for Bound-Constrained Optimization Without SOSC," Journal of Optimization Theory and Applications, Springer, vol. 189(1), pages 96-116, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Armand & Ngoc Nguyen Tran, 2021. "Local Convergence Analysis of a Primal–Dual Method for Bound-Constrained Optimization Without SOSC," Journal of Optimization Theory and Applications, Springer, vol. 189(1), pages 96-116, April.
    2. Yonggang Pei & Shaofang Song & Detong Zhu, 2023. "A sequential adaptive regularisation using cubics algorithm for solving nonlinear equality constrained optimization," Computational Optimization and Applications, Springer, vol. 84(3), pages 1005-1033, April.
    3. Dominique Orban & Abel Soares Siqueira, 2020. "A regularization method for constrained nonlinear least squares," Computational Optimization and Applications, Springer, vol. 76(3), pages 961-989, July.
    4. Matteo Lapucci & Alessio Sortino, 2024. "On the Convergence of Inexact Alternate Minimization in Problems with $$\ell _0$$ ℓ 0 Penalties," SN Operations Research Forum, Springer, vol. 5(2), pages 1-11, June.
    5. Tran Ngoc Nguyen, 2025. "Convergence analysis of a mixed logarithmic barrier-augmented Lagrangian algorithm without constraint qualification," Computational Optimization and Applications, Springer, vol. 91(3), pages 1105-1134, July.
    6. Lahcen El Bourkhissi & Ion Necoara, 2025. "Complexity of linearized quadratic penalty for optimization with nonlinear equality constraints," Journal of Global Optimization, Springer, vol. 91(3), pages 483-510, March.
    7. Glaydston Carvalho Bento & João Xavier Cruz Neto & Antoine Soubeyran & Valdinês Leite Sousa Júnior, 2016. "Dual Descent Methods as Tension Reduction Systems," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 209-227, October.
    8. Yutao Zheng & Bing Zheng, 2017. "Two New Dai–Liao-Type Conjugate Gradient Methods for Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 502-509, November.
    9. Giovanni Fasano & Massimo Roma, 2016. "A novel class of approximate inverse preconditioners for large positive definite linear systems in optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 399-429, November.
    10. Yamakawa, Yuya & Yamashita, Nobuo, 2025. "Convergence analysis of a regularized Newton method with generalized regularization terms for unconstrained convex optimization problems," Applied Mathematics and Computation, Elsevier, vol. 491(C).
    11. Renke Kuhlmann & Christof Büskens, 2018. "A primal–dual augmented Lagrangian penalty-interior-point filter line search algorithm," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(3), pages 451-483, June.
    12. Mehiddin Al-Baali & Andrea Caliciotti & Giovanni Fasano & Massimo Roma, 2017. "Exploiting damped techniques for nonlinear conjugate gradient methods," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 501-522, December.
    13. Simeon vom Dahl & Christian Kanzow, 2024. "An inexact regularized proximal Newton method without line search," Computational Optimization and Applications, Springer, vol. 89(3), pages 585-624, December.
    14. Ashkan Sadeghi-Lotfabadi & Kamaledin Ghiasi-Shirazi, 2025. "Speeding up L-BFGS by direct approximation of the inverse Hessian matrix," Computational Optimization and Applications, Springer, vol. 91(1), pages 283-310, May.
    15. J. Martínez & M. Raydan, 2015. "Separable cubic modeling and a trust-region strategy for unconstrained minimization with impact in global optimization," Journal of Global Optimization, Springer, vol. 63(2), pages 319-342, October.
    16. Franck Iutzeler & Jérôme Malick, 2018. "On the Proximal Gradient Algorithm with Alternated Inertia," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 688-710, March.
    17. Yaguang Yang, 2025. "An arc-search interior-point algorithm for nonlinear constrained optimization," Computational Optimization and Applications, Springer, vol. 90(3), pages 969-995, April.
    18. Nicholas I. M. Gould & Daniel P. Robinson, 2017. "A dual gradient-projection method for large-scale strictly convex quadratic problems," Computational Optimization and Applications, Springer, vol. 67(1), pages 1-38, May.
    19. Paul Armand & Riadh Omheni, 2017. "A Mixed Logarithmic Barrier-Augmented Lagrangian Method for Nonlinear Optimization," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 523-547, May.
    20. Charles Audet & Kwassi Joseph Dzahini & Michael Kokkolaras & Sébastien Le Digabel, 2021. "Stochastic mesh adaptive direct search for blackbox optimization using probabilistic estimates," Computational Optimization and Applications, Springer, vol. 79(1), pages 1-34, May.

    More about this item

    Keywords

    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:85:y:2017:i:1:d:10.1007_s00186-016-0561-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.