IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v90y2025i3d10.1007_s10589-025-00648-1.html
   My bibliography  Save this article

An arc-search interior-point algorithm for nonlinear constrained optimization

Author

Listed:
  • Yaguang Yang

    (Goddard Space Flight Center, NASA)

Abstract

This paper proposes a new arc-search interior-point algorithm for the nonlinear constrained optimization problem. The proposed algorithm uses the second-order derivatives to construct a search arc that approaches the optimizer. Because the arc stays in the interior set longer than any straight line, it is expected that the scheme will generate a better new iterate than a line search method. The computation of the second-order derivatives requires to solve the second linear system of equations, but the coefficient matrix of the second linear system of equations is the same as the first linear system of equations. Therefore, the matrix decomposition obtained while solving the first linear system of equations can be reused. In addition, most elements of the right-hand side vector of the second linear system of equations are already computed when the coefficient matrix is assembled. Therefore, the computation cost for solving the second linear system of equations is insignificant and the benefit of having a better search scheme is well justified. The convergence of the proposed algorithm is established. Some preliminary test results are reported to demonstrate the merit of the proposed algorithm.

Suggested Citation

  • Yaguang Yang, 2025. "An arc-search interior-point algorithm for nonlinear constrained optimization," Computational Optimization and Applications, Springer, vol. 90(3), pages 969-995, April.
  • Handle: RePEc:spr:coopap:v:90:y:2025:i:3:d:10.1007_s10589-025-00648-1
    DOI: 10.1007/s10589-025-00648-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-025-00648-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-025-00648-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Nicholas Gould & Dominique Orban & Philippe Toint, 2015. "CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization," Computational Optimization and Applications, Springer, vol. 60(3), pages 545-557, April.
    2. Yaguang Yang, 2013. "A Polynomial Arc-Search Interior-Point Algorithm for Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 158(3), pages 859-873, September.
    3. Yang, Yaguang, 2011. "A polynomial arc-search interior-point algorithm for convex quadratic programming," European Journal of Operational Research, Elsevier, vol. 215(1), pages 25-38, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Pirhaji & M. Zangiabadi & H. Mansouri, 2017. "An $$\ell _{2}$$ ℓ 2 -neighborhood infeasible interior-point algorithm for linear complementarity problems," 4OR, Springer, vol. 15(2), pages 111-131, June.
    2. Matteo Lapucci & Alessio Sortino, 2024. "On the Convergence of Inexact Alternate Minimization in Problems with $$\ell _0$$ ℓ 0 Penalties," SN Operations Research Forum, Springer, vol. 5(2), pages 1-11, June.
    3. Jian Luo & Yukai Zheng & Tao Hong & An Luo & Xueqi Yang, 2024. "Fuzzy support vector regressions for short-term load forecasting," Fuzzy Optimization and Decision Making, Springer, vol. 23(3), pages 363-385, September.
    4. Lahcen El Bourkhissi & Ion Necoara, 2025. "Complexity of linearized quadratic penalty for optimization with nonlinear equality constraints," Journal of Global Optimization, Springer, vol. 91(3), pages 483-510, March.
    5. Yutao Zheng & Bing Zheng, 2017. "Two New Dai–Liao-Type Conjugate Gradient Methods for Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 502-509, November.
    6. Giovanni Fasano & Massimo Roma, 2016. "A novel class of approximate inverse preconditioners for large positive definite linear systems in optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 399-429, November.
    7. Yonggang Pei & Shaofang Song & Detong Zhu, 2023. "A sequential adaptive regularisation using cubics algorithm for solving nonlinear equality constrained optimization," Computational Optimization and Applications, Springer, vol. 84(3), pages 1005-1033, April.
    8. Mehiddin Al-Baali & Andrea Caliciotti & Giovanni Fasano & Massimo Roma, 2017. "Exploiting damped techniques for nonlinear conjugate gradient methods," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 501-522, December.
    9. Ashkan Sadeghi-Lotfabadi & Kamaledin Ghiasi-Shirazi, 2025. "Speeding up L-BFGS by direct approximation of the inverse Hessian matrix," Computational Optimization and Applications, Springer, vol. 91(1), pages 283-310, May.
    10. Einosuke Iida & Makoto Yamashita, 2024. "An infeasible interior-point arc-search method with Nesterov’s restarting strategy for linear programming problems," Computational Optimization and Applications, Springer, vol. 88(2), pages 643-676, June.
    11. Nicholas I. M. Gould & Daniel P. Robinson, 2017. "A dual gradient-projection method for large-scale strictly convex quadratic problems," Computational Optimization and Applications, Springer, vol. 67(1), pages 1-38, May.
    12. Charles Audet & Kwassi Joseph Dzahini & Michael Kokkolaras & Sébastien Le Digabel, 2021. "Stochastic mesh adaptive direct search for blackbox optimization using probabilistic estimates," Computational Optimization and Applications, Springer, vol. 79(1), pages 1-34, May.
    13. Caliciotti, Andrea & Fasano, Giovanni & Roma, Massimo, 2018. "Preconditioned Nonlinear Conjugate Gradient methods based on a modified secant equation," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 196-214.
    14. Yaguang Yang, 2013. "A Polynomial Arc-Search Interior-Point Algorithm for Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 158(3), pages 859-873, September.
    15. Jianjun Liu & Xiangmin Xu & Xuehui Cui, 2018. "An accelerated nonmonotone trust region method with adaptive trust region for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 69(1), pages 77-97, January.
    16. Rujun Jiang & Man-Chung Yue & Zhishuo Zhou, 2021. "An accelerated first-order method with complexity analysis for solving cubic regularization subproblems," Computational Optimization and Applications, Springer, vol. 79(2), pages 471-506, June.
    17. Yiwen Chen & Warren Hare & Amy Wiebe, 2024. "Q-fully quadratic modeling and its application in a random subspace derivative-free method," Computational Optimization and Applications, Springer, vol. 89(2), pages 317-360, November.
    18. Andrea Cristofari & Marianna Santis & Stefano Lucidi & Francesco Rinaldi, 2017. "A Two-Stage Active-Set Algorithm for Bound-Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 369-401, February.
    19. S. Gratton & C. W. Royer & L. N. Vicente & Z. Zhang, 2019. "Direct search based on probabilistic feasible descent for bound and linearly constrained problems," Computational Optimization and Applications, Springer, vol. 72(3), pages 525-559, April.
    20. Sven Leyffer & Charlie Vanaret, 2020. "An augmented Lagrangian filter method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(2), pages 343-376, October.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:90:y:2025:i:3:d:10.1007_s10589-025-00648-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.