IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v65y2016i2d10.1007_s10589-015-9765-1.html
   My bibliography  Save this article

A novel class of approximate inverse preconditioners for large positive definite linear systems in optimization

Author

Listed:
  • Giovanni Fasano

    (Università Ca’Foscari Venezia
    National Research Council–Marine Technology Research Institute (CNR-INSEAN))

  • Massimo Roma

    (Dipartimento di Ingegneria Informatica, Automatica e Gestionale “A. Ruberti” SAPIENZA Università di Roma)

Abstract

We propose a class of preconditioners for large positive definite linear systems, arising in nonlinear optimization frameworks. These preconditioners can be computed as by-product of Krylov-subspace solvers. Preconditioners in our class are chosen by setting the values of some user-dependent parameters. We first provide some basic spectral properties which motivate a theoretical interest for the proposed class of preconditioners. Then, we report the results of a comparative numerical experience, among some preconditioners in our class, the unpreconditioned case and the preconditioner in Fasano and Roma (Comput Optim Appl 56:253–290, 2013). The experience was carried on first considering some relevant linear systems proposed in the literature. Then, we embedded our preconditioners within a linesearch-based Truncated Newton method, where sequences of linear systems (namely Newton’s equations), are required to be solved. We performed an extensive numerical testing over the entire medium-large scale convex unconstrained optimization test set of CUTEst collection (Gould et al. Comput Optim Appl 60:545–557, 2015), confirming the efficiency of our proposal and the improvement with respect to the preconditioner in Fasano and Roma (Comput Optim Appl 56:253–290, 2013).

Suggested Citation

  • Giovanni Fasano & Massimo Roma, 2016. "A novel class of approximate inverse preconditioners for large positive definite linear systems in optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 399-429, November.
  • Handle: RePEc:spr:coopap:v:65:y:2016:i:2:d:10.1007_s10589-015-9765-1
    DOI: 10.1007/s10589-015-9765-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-015-9765-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-015-9765-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholas Gould & Dominique Orban & Philippe Toint, 2015. "CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization," Computational Optimization and Applications, Springer, vol. 60(3), pages 545-557, April.
    2. Renato Leone & Giovanni Fasano & Massimo Roma & Yaroslav D. Sergeyev, 2020. "Iterative Grossone-Based Computation of Negative Curvature Directions in Large-Scale Optimization," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 554-589, August.
    3. G. Fasano, 2005. "Planar Conjugate Gradient Algorithm for Large-Scale Unconstrained Optimization, Part 1: Theory," Journal of Optimization Theory and Applications, Springer, vol. 125(3), pages 523-541, June.
    4. Giovanni Fasano & Massimo Roma, 2013. "Preconditioning Newton–Krylov methods in nonconvex large scale optimization," Computational Optimization and Applications, Springer, vol. 56(2), pages 253-290, October.
    5. Giovanni Fasano & Massimo Roma, 2015. "An estimation of the condition number for a class of indefinite preconditioned matrices," DIAG Technical Reports 2015-01, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrzej Stachurski, 2017. "On a conjugate directions method for solving strictly convex QP problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 523-548, December.
    2. Caliciotti, Andrea & Fasano, Giovanni & Roma, Massimo, 2018. "Preconditioned Nonlinear Conjugate Gradient methods based on a modified secant equation," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 196-214.
    3. Mehiddin Al-Baali & Andrea Caliciotti & Giovanni Fasano & Massimo Roma, 2017. "Exploiting damped techniques for nonlinear conjugate gradient methods," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 501-522, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Caliciotti & Giovanni Fasano & Florian Potra & Massimo Roma, 2020. "Issues on the use of a modified Bunch and Kaufman decomposition for large scale Newton’s equation," Computational Optimization and Applications, Springer, vol. 77(3), pages 627-651, December.
    2. Giovanni Fasano, 2015. "A Framework of Conjugate Direction Methods for Symmetric Linear Systems in Optimization," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 883-914, March.
    3. Giovanni Fasano & Raffaele Pesenti, 2017. "Conjugate Direction Methods and Polarity for Quadratic Hypersurfaces," Journal of Optimization Theory and Applications, Springer, vol. 175(3), pages 764-794, December.
    4. Giovanni Fasano & Massimo Roma, 2011. "A Class of Preconditioners for Large Indefinite Linear Systems, as by-product of Krylov subspace Methods: Part I," Working Papers 4, Venice School of Management - Department of Management, Università Ca' Foscari Venezia.
    5. Mehiddin Al-Baali & Andrea Caliciotti & Giovanni Fasano & Massimo Roma, 2017. "Exploiting damped techniques for nonlinear conjugate gradient methods," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 501-522, December.
    6. Caliciotti, Andrea & Fasano, Giovanni & Roma, Massimo, 2018. "Preconditioned Nonlinear Conjugate Gradient methods based on a modified secant equation," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 196-214.
    7. Giovanni Fasano & Massimo Roma, 2013. "Preconditioning Newton–Krylov methods in nonconvex large scale optimization," Computational Optimization and Applications, Springer, vol. 56(2), pages 253-290, October.
    8. Renato Leone & Giovanni Fasano & Massimo Roma & Yaroslav D. Sergeyev, 2020. "Iterative Grossone-Based Computation of Negative Curvature Directions in Large-Scale Optimization," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 554-589, August.
    9. Matteo Lapucci & Alessio Sortino, 2024. "On the Convergence of Inexact Alternate Minimization in Problems with $$\ell _0$$ ℓ 0 Penalties," SN Operations Research Forum, Springer, vol. 5(2), pages 1-11, June.
    10. Lahcen El Bourkhissi & Ion Necoara, 2025. "Complexity of linearized quadratic penalty for optimization with nonlinear equality constraints," Journal of Global Optimization, Springer, vol. 91(3), pages 483-510, March.
    11. Yutao Zheng & Bing Zheng, 2017. "Two New Dai–Liao-Type Conjugate Gradient Methods for Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 502-509, November.
    12. Yonggang Pei & Shaofang Song & Detong Zhu, 2023. "A sequential adaptive regularisation using cubics algorithm for solving nonlinear equality constrained optimization," Computational Optimization and Applications, Springer, vol. 84(3), pages 1005-1033, April.
    13. Nicholas I. M. Gould & Daniel P. Robinson, 2017. "A dual gradient-projection method for large-scale strictly convex quadratic problems," Computational Optimization and Applications, Springer, vol. 67(1), pages 1-38, May.
    14. Charles Audet & Kwassi Joseph Dzahini & Michael Kokkolaras & Sébastien Le Digabel, 2021. "Stochastic mesh adaptive direct search for blackbox optimization using probabilistic estimates," Computational Optimization and Applications, Springer, vol. 79(1), pages 1-34, May.
    15. Jianjun Liu & Xiangmin Xu & Xuehui Cui, 2018. "An accelerated nonmonotone trust region method with adaptive trust region for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 69(1), pages 77-97, January.
    16. Renato De Leone & Giovanni Fasano & Yaroslav D. Sergeyev, 2018. "Planar methods and grossone for the Conjugate Gradient breakdown in nonlinear programming," Computational Optimization and Applications, Springer, vol. 71(1), pages 73-93, September.
    17. Rujun Jiang & Man-Chung Yue & Zhishuo Zhou, 2021. "An accelerated first-order method with complexity analysis for solving cubic regularization subproblems," Computational Optimization and Applications, Springer, vol. 79(2), pages 471-506, June.
    18. Yiwen Chen & Warren Hare & Amy Wiebe, 2024. "Q-fully quadratic modeling and its application in a random subspace derivative-free method," Computational Optimization and Applications, Springer, vol. 89(2), pages 317-360, November.
    19. Andrea Cristofari & Marianna Santis & Stefano Lucidi & Francesco Rinaldi, 2017. "A Two-Stage Active-Set Algorithm for Bound-Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 369-401, February.
    20. Marco Corazza & Giacomo Di Tollo & Giovanni Fasano & Raffaele Pesenti, 2015. "A novel initialization of PSO for costly portfolio selection problems," Working Papers 4, Venice School of Management - Department of Management, Università Ca' Foscari Venezia.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:65:y:2016:i:2:d:10.1007_s10589-015-9765-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.