IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v91y2025i3d10.1007_s10898-024-01456-3.html
   My bibliography  Save this article

Complexity of linearized quadratic penalty for optimization with nonlinear equality constraints

Author

Listed:
  • Lahcen El Bourkhissi

    (National University for Science and Technology Politehnica Bucharest)

  • Ion Necoara

    (National University for Science and Technology Politehnica Bucharest
    Gheorghe Mihoc-Caius Iacob Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy)

Abstract

In this paper we consider a nonconvex optimization problem with nonlinear equality constraints. We assume that both, the objective function and the functional constraints, are locally smooth. For solving this problem, we propose a linearized quadratic penalty method, i.e., we linearize the objective function and the functional constraints in the penalty formulation at the current iterate and add a quadratic regularization, thus yielding a subproblem that is easy to solve, and whose solution is the next iterate. Under a new adaptive regularization parameter choice, we provide convergence guarantees for the iterates of this method to an $$\epsilon $$ ϵ first-order optimal solution in $${\mathcal {O}}({\epsilon ^{-2.5}})$$ O ( ϵ - 2.5 ) iterations. Finally, we show that when the problem data satisfy Kurdyka–Lojasiewicz property, e.g., are semialgebraic, the whole sequence generated by the proposed algorithm converges and we derive improved local convergence rates depending on the KL parameter. We validate the theory and the performance of the proposed algorithm by numerically comparing it with some existing methods from the literature.

Suggested Citation

  • Lahcen El Bourkhissi & Ion Necoara, 2025. "Complexity of linearized quadratic penalty for optimization with nonlinear equality constraints," Journal of Global Optimization, Springer, vol. 91(3), pages 483-510, March.
  • Handle: RePEc:spr:jglopt:v:91:y:2025:i:3:d:10.1007_s10898-024-01456-3
    DOI: 10.1007/s10898-024-01456-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01456-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01456-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. F. Izmailov & M. V. Solodov, 2023. "Convergence rate estimates for penalty methods revisited," Computational Optimization and Applications, Springer, vol. 85(3), pages 973-992, July.
    2. Eyal Cohen & Nadav Hallak & Marc Teboulle, 2022. "A Dynamic Alternating Direction of Multipliers for Nonconvex Minimization with Nonlinear Functional Equality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 324-353, June.
    3. Maryam Yashtini, 2022. "Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 913-939, December.
    4. Nicholas Gould & Dominique Orban & Philippe Toint, 2015. "CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization," Computational Optimization and Applications, Springer, vol. 60(3), pages 545-557, April.
    5. Qihang Lin & Runchao Ma & Yangyang Xu, 2022. "Complexity of an inexact proximal-point penalty method for constrained smooth non-convex optimization," Computational Optimization and Applications, Springer, vol. 82(1), pages 175-224, May.
    6. Jianqing Fan, 1997. "Comments on «Wavelets in statistics: A review» by A. Antoniadis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 131-138, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le Thi Khanh Hien & Dimitri Papadimitriou, 2024. "An inertial ADMM for a class of nonconvex composite optimization with nonlinear coupling constraints," Journal of Global Optimization, Springer, vol. 89(4), pages 927-948, August.
    2. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    3. Matteo Lapucci & Alessio Sortino, 2024. "On the Convergence of Inexact Alternate Minimization in Problems with $$\ell _0$$ ℓ 0 Penalties," SN Operations Research Forum, Springer, vol. 5(2), pages 1-11, June.
    4. Yutao Zheng & Bing Zheng, 2017. "Two New Dai–Liao-Type Conjugate Gradient Methods for Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 502-509, November.
    5. A. Karagrigoriou & C. Koukouvinos & K. Mylona, 2010. "On the advantages of the non-concave penalized likelihood model selection method with minimum prediction errors in large-scale medical studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(1), pages 13-24.
    6. Giovanni Fasano & Massimo Roma, 2016. "A novel class of approximate inverse preconditioners for large positive definite linear systems in optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 399-429, November.
    7. Yonggang Pei & Shaofang Song & Detong Zhu, 2023. "A sequential adaptive regularisation using cubics algorithm for solving nonlinear equality constrained optimization," Computational Optimization and Applications, Springer, vol. 84(3), pages 1005-1033, April.
    8. Mehiddin Al-Baali & Andrea Caliciotti & Giovanni Fasano & Massimo Roma, 2017. "Exploiting damped techniques for nonlinear conjugate gradient methods," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 501-522, December.
    9. Jianghua Yin & Chunming Tang & Jinbao Jian & Qiongxuan Huang, 2024. "A partial Bregman ADMM with a general relaxation factor for structured nonconvex and nonsmooth optimization," Journal of Global Optimization, Springer, vol. 89(4), pages 899-926, August.
    10. Nicholas I. M. Gould & Daniel P. Robinson, 2017. "A dual gradient-projection method for large-scale strictly convex quadratic problems," Computational Optimization and Applications, Springer, vol. 67(1), pages 1-38, May.
    11. Charles Audet & Kwassi Joseph Dzahini & Michael Kokkolaras & Sébastien Le Digabel, 2021. "Stochastic mesh adaptive direct search for blackbox optimization using probabilistic estimates," Computational Optimization and Applications, Springer, vol. 79(1), pages 1-34, May.
    12. Caliciotti, Andrea & Fasano, Giovanni & Roma, Massimo, 2018. "Preconditioned Nonlinear Conjugate Gradient methods based on a modified secant equation," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 196-214.
    13. Hongchang Hu & Mingqiu Liu & Zhen Zeng, 2025. "Penalized Lq-likelihood estimator and its influence function in generalized linear models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 88(1), pages 1-18, January.
    14. Jianjun Liu & Xiangmin Xu & Xuehui Cui, 2018. "An accelerated nonmonotone trust region method with adaptive trust region for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 69(1), pages 77-97, January.
    15. Rujun Jiang & Man-Chung Yue & Zhishuo Zhou, 2021. "An accelerated first-order method with complexity analysis for solving cubic regularization subproblems," Computational Optimization and Applications, Springer, vol. 79(2), pages 471-506, June.
    16. Yiwen Chen & Warren Hare & Amy Wiebe, 2024. "Q-fully quadratic modeling and its application in a random subspace derivative-free method," Computational Optimization and Applications, Springer, vol. 89(2), pages 317-360, November.
    17. Gao, Yan & Zhang, Xinyu & Wang, Shouyang & Zou, Guohua, 2016. "Model averaging based on leave-subject-out cross-validation," Journal of Econometrics, Elsevier, vol. 192(1), pages 139-151.
    18. Andrea Cristofari & Marianna Santis & Stefano Lucidi & Francesco Rinaldi, 2017. "A Two-Stage Active-Set Algorithm for Bound-Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 369-401, February.
    19. Jefferson G. Melo & Renato D. C. Monteiro & Hairong Wang, 2024. "A Proximal Augmented Lagrangian Method for Linearly Constrained Nonconvex Composite Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 388-420, July.
    20. S. Gratton & C. W. Royer & L. N. Vicente & Z. Zhang, 2019. "Direct search based on probabilistic feasible descent for bound and linearly constrained problems," Computational Optimization and Applications, Springer, vol. 72(3), pages 525-559, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:91:y:2025:i:3:d:10.1007_s10898-024-01456-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.