IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v89y2024i4d10.1007_s10898-024-01382-4.html
   My bibliography  Save this article

An inertial ADMM for a class of nonconvex composite optimization with nonlinear coupling constraints

Author

Listed:
  • Le Thi Khanh Hien

    (Huawei Belgium Research Center)

  • Dimitri Papadimitriou

    (Huawei Belgium Research Center)

Abstract

In this paper, we propose an inertial alternating direction method of multipliers for solving a class of non-convex multi-block optimization problems with nonlinear coupling constraints. Distinctive features of our proposed method, when compared with other alternating direction methods of multipliers for solving non-convex problems with nonlinear coupling constraints, include: (i) we apply the inertial technique to the update of primal variables and (ii) we apply a non-standard update rule for the multiplier by scaling the multiplier by a factor before moving along the ascent direction where a relaxation parameter is allowed. Subsequential convergence and global convergence are presented for the proposed algorithm.

Suggested Citation

  • Le Thi Khanh Hien & Dimitri Papadimitriou, 2024. "An inertial ADMM for a class of nonconvex composite optimization with nonlinear coupling constraints," Journal of Global Optimization, Springer, vol. 89(4), pages 927-948, August.
  • Handle: RePEc:spr:jglopt:v:89:y:2024:i:4:d:10.1007_s10898-024-01382-4
    DOI: 10.1007/s10898-024-01382-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01382-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01382-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Radu Ioan Bot & Dang-Khoa Nguyen, 2020. "The Proximal Alternating Direction Method of Multipliers in the Nonconvex Setting: Convergence Analysis and Rates," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 682-712, May.
    2. Eyal Cohen & Nadav Hallak & Marc Teboulle, 2022. "A Dynamic Alternating Direction of Multipliers for Nonconvex Minimization with Nonlinear Functional Equality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 324-353, June.
    3. Maryam Yashtini, 2022. "Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 913-939, December.
    4. P. Tseng & S. Yun, 2009. "Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 513-535, March.
    5. Jérôme Bolte & Shoham Sabach & Marc Teboulle, 2018. "Nonconvex Lagrangian-Based Optimization: Monitoring Schemes and Global Convergence," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1210-1232, November.
    6. repec:dau:papers:123456789/4688 is not listed on IDEAS
    7. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianchao Bai & Miao Zhang & Hongchao Zhang, 2025. "An inexact ADMM for separable nonconvex and nonsmooth optimization," Computational Optimization and Applications, Springer, vol. 90(2), pages 445-479, March.
    2. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    3. Lahcen El Bourkhissi & Ion Necoara, 2025. "Complexity of linearized quadratic penalty for optimization with nonlinear equality constraints," Journal of Global Optimization, Springer, vol. 91(3), pages 483-510, March.
    4. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
    5. Eyal Cohen & Nadav Hallak & Marc Teboulle, 2022. "A Dynamic Alternating Direction of Multipliers for Nonconvex Minimization with Nonlinear Functional Equality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 324-353, June.
    6. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "Multi-block Bregman proximal alternating linearized minimization and its application to orthogonal nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 79(3), pages 681-715, July.
    7. Liu, Yulan & Bi, Shujun, 2019. "Error bounds for non-polyhedral convex optimization and applications to linear convergence of FDM and PGM," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 418-435.
    8. Dolgopolik, Maksim V., 2021. "The alternating direction method of multipliers for finding the distance between ellipsoids," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    9. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    10. Ruiling Luo & Zhensheng Yu, 2025. "The Proximal Alternating Direction Method of Multipliers for a Class of Nonlinear Constrained Optimization Problems," Mathematics, MDPI, vol. 13(3), pages 1-16, January.
    11. Ion Necoara & Yurii Nesterov & François Glineur, 2017. "Random Block Coordinate Descent Methods for Linearly Constrained Optimization over Networks," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 227-254, April.
    12. Ching-pei Lee & Stephen J. Wright, 2019. "Inexact Successive quadratic approximation for regularized optimization," Computational Optimization and Applications, Springer, vol. 72(3), pages 641-674, April.
    13. Luoying Yang & Tong Tong Wu, 2023. "Model‐based clustering of high‐dimensional longitudinal data via regularization," Biometrics, The International Biometric Society, vol. 79(2), pages 761-774, June.
    14. Christian Kanzow & Theresa Lechner, 2021. "Globalized inexact proximal Newton-type methods for nonconvex composite functions," Computational Optimization and Applications, Springer, vol. 78(2), pages 377-410, March.
    15. Jin Zhang & Xide Zhu, 2022. "Linear Convergence of Prox-SVRG Method for Separable Non-smooth Convex Optimization Problems under Bounded Metric Subregularity," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 564-597, February.
    16. Jianghua Yin & Chunming Tang & Jinbao Jian & Qiongxuan Huang, 2024. "A partial Bregman ADMM with a general relaxation factor for structured nonconvex and nonsmooth optimization," Journal of Global Optimization, Springer, vol. 89(4), pages 899-926, August.
    17. Hongbo Dong & Min Tao, 2021. "On the Linear Convergence to Weak/Standard d-Stationary Points of DCA-Based Algorithms for Structured Nonsmooth DC Programming," Journal of Optimization Theory and Applications, Springer, vol. 189(1), pages 190-220, April.
    18. Yaohua Hu & Chong Li & Kaiwen Meng & Xiaoqi Yang, 2021. "Linear convergence of inexact descent method and inexact proximal gradient algorithms for lower-order regularization problems," Journal of Global Optimization, Springer, vol. 79(4), pages 853-883, April.
    19. Bolte, Jérôme & Glaudin, Lilian & Pauwels, Edouard & Serrurier, Matthieu, 2021. "A Hölderian backtracking method for min-max and min-min problems," TSE Working Papers 21-1243, Toulouse School of Economics (TSE).
    20. Eric P Xing & Ross E Curtis & Georg Schoenherr & Seunghak Lee & Junming Yin & Kriti Puniyani & Wei Wu & Peter Kinnaird, 2014. "GWAS in a Box: Statistical and Visual Analytics of Structured Associations via GenAMap," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:89:y:2024:i:4:d:10.1007_s10898-024-01382-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.