IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v20y2015i8p1459-1470.html
   My bibliography  Save this article

Influence of bioenergy crop Jatropha curcas amendment on soil biogeochemistry in a tropical vertisol

Author

Listed:
  • Bharati Kollah
  • Garima Dubey
  • Peter Dunfield
  • Santosh Mohanty

    ()

Abstract

Experiments were carried out to determine how the incorporation of biomass from the bioenergy crop Jatropha curcas into a tropical vertisol affects the biogeochemical processes important for greenhouse gas (GHG) fluxes, specifically methane (CH 4 ) production, carbon dioxide (CO 2 ) production, and CH 4 consumption. Leaf biomass of J. curcas was incorporated at 0.1, 0.5, and 1 % (w/w) into soil maintained under 60 % of moisture-holding capacity (MHC). Biomass addition significantly stimulated potential CH 4 and CO 2 production while inhibiting potential CH 4 consumption. When 1 % of J. curcas biomass was added to soil, potential CH 4 production increased nearly 50-fold over 60 days, from 2.45 μg CH 4 g −1 soil day −1 in unamended soil to 115 μg g −1 day −1 in soil containing leaf biomass. Soil CO 2 production also doubled when the J. curcas biomass was added. The potential CH 4 consumption rate of soil was inhibited almost completely by 1 % of added biomass. The culturable methanotroph population was positively correlated with the CH 4 consumption rate (r = 0.961, p > 0.0001) and was inhibited 20-fold by 1 % of biomass addition. In contrast, the total population of aerobic heterotrophs culturable on a complex medium increased from 11 to 59 × 10 6 of colony-forming units (CFU) g −1 of soil after biomass addition. Significant positive correlation was observed between the total heterotroph population and both CH 4 production (r = 0.861, p = 0.0003) and CO 2 production (r = 0.863, p = 0.0002). Our study shows that biomass from the bioenergy crop J. curcas can affect soil biogeochemical processes that control GHG emissions. We propose that a high incorporation of J. curcas biomass could dramatically change the CH 4 flux in tropical soil by simultaneously increasing CH 4 production and decreasing CH 4 consumption, and we therefore recommend that biomass incorporation to soil be minimized (>0.1 %) as a strategy to mitigate GHG emission. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Bharati Kollah & Garima Dubey & Peter Dunfield & Santosh Mohanty, 2015. "Influence of bioenergy crop Jatropha curcas amendment on soil biogeochemistry in a tropical vertisol," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1459-1470, December.
  • Handle: RePEc:spr:masfgc:v:20:y:2015:i:8:p:1459-1470
    DOI: 10.1007/s11027-014-9555-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-014-9555-6
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:20:y:2015:i:8:p:1459-1470. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.