IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i10p2856-d232612.html
   My bibliography  Save this article

Climate Change Affects Forest Productivity in a Typical Climate Transition Region of China

Author

Listed:
  • Yongxia Ding

    (School of Geography and Tourism, Shaanxi Normal University, Xi’an 710169, China)

  • Siqi Liang

    (State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China)

  • Shouzhang Peng

    (State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China)

Abstract

As global climate change has a large effect on the structure and function of vegetation, it is very important to understand how forests in climate transition regions respond to climate change. The present study investigates the net primary productivity (NPP) of two planted forests ( Robinia pseudoacacia and Pinus tabulaeformis ) and one natural forest ( Quercus wutaishanica ) from 1951–2100 using the LPJ-GUESS model in the Shaanxi province of China, which is a typical transition region from humid to dry climates. We found that: (1) Future annual precipitation and mean temperature exhibited nonsignificant and significant increasing trend in the region, respectively, indicating a drier climate in future; (2) although precipitation would increase in the dry area and decrease in the humid area, the NPP of each species in the dry area would be lower than that of the humid area, possibly because increasing temperature and CO 2 concentration could restrain forest growth in dry areas and promote forest growth in humid areas; (3) of the three species, P. tabulaeformis forest exhibited the highest average NPP and R. pseudoacacia forest exhibited the highest NPP trend in both dry and humid areas, indicating these planted species may be adaptable to future climate change. Our results provide novel insights into the potential response of forest productivity to a changing climate in the transition region from humid to dry climates.

Suggested Citation

  • Yongxia Ding & Siqi Liang & Shouzhang Peng, 2019. "Climate Change Affects Forest Productivity in a Typical Climate Transition Region of China," Sustainability, MDPI, vol. 11(10), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2856-:d:232612
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/10/2856/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/10/2856/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhonglin Xu & Chuanyan Zhao & Zhaodong Feng & Fang Zhang & Hassan Sher & Chao Wang & Huanhua Peng & Ying Wang & Yang Zhao & Yao Wang & Shouzhang Peng & Xianglin Zheng, 2013. "Estimating realized and potential carbon storage benefits from reforestation and afforestation under climate change: a case study of the Qinghai spruce forests in the Qilian Mountains, northwestern Ch," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(8), pages 1257-1268, December.
    2. Sallaba, Florian & Lehsten, Dörte & Seaquist, Jonathan & Sykes, Martin T., 2015. "A rapid NPP meta-model for current and future climate and CO2 scenarios in Europe," Ecological Modelling, Elsevier, vol. 302(C), pages 29-41.
    3. Martin Heimann & Markus Reichstein, 2008. "Terrestrial ecosystem carbon dynamics and climate feedbacks," Nature, Nature, vol. 451(7176), pages 289-292, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruiming Cheng & Jing Zhang & Xinyue Wang & Zhidong Zhang, 2022. "Growth Suitability Evaluation of Larix principis-rupprechtii Mayr Based on Potential NPP under Different Climate Scenarios," Sustainability, MDPI, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabastine Ugbemuna Ugbaje & Thomas F.A. Bishop, 2020. "Hydrological Control of Vegetation Greenness Dynamics in Africa: A Multivariate Analysis Using Satellite Observed Soil Moisture, Terrestrial Water Storage and Precipitation," Land, MDPI, vol. 9(1), pages 1-15, January.
    2. Wu, Yinyin & Wang, Ping & Liu, Xin & Chen, Jiandong & Song, Malin, 2020. "Analysis of regional carbon allocation and carbon trading based on net primary productivity in China," China Economic Review, Elsevier, vol. 60(C).
    3. Yuanbo Cao & Huijie Xiao & Baitian Wang & Yunlong Zhang & Honghui Wu & Xijing Wang & Yadong Yang & Tingting Wei, 2021. "Soil Respiration May Overestimate or Underestimate in Forest Ecosystems," Sustainability, MDPI, vol. 13(5), pages 1-16, March.
    4. Li Yu & Fengxue Gu & Mei Huang & Bo Tao & Man Hao & Zhaosheng Wang, 2020. "Impacts of 1.5 °C and 2 °C Global Warming on Net Primary Productivity and Carbon Balance in China’s Terrestrial Ecosystems," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    5. De Leijster, V. & Santos, M.J. & Wassen, M.W. & Camargo García, J.C. & Llorca Fernandez, I. & Verkuil, L. & Scheper, A. & Steenhuis, M. & Verweij, P.A., 2021. "Ecosystem services trajectories in coffee agroforestry in Colombia over 40 years," Ecosystem Services, Elsevier, vol. 48(C).
    6. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    7. Furui Xi & Gang Lin & Yanan Zhao & Xiang Li & Zhiyu Chen & Chenglong Cao, 2023. "Land Use Optimization and Carbon Storage Estimation in the Yellow River Basin, China," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    8. Rosemary-Claire Collard & Jessica Dempsey, 2013. "Life for Sale? The Politics of Lively Commodities," Environment and Planning A, , vol. 45(11), pages 2682-2699, November.
    9. Ludovic Henneron & Jerôme Balesdent & Gaël Alvarez & Pierre Barré & François Baudin & Isabelle Basile-Doelsch & Lauric Cécillon & Alejandro Fernandez-Martinez & Christine Hatté & Sébastien Fontaine, 2022. "Bioenergetic control of soil carbon dynamics across depth," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Bhattarai, Mukesh Dev & Secchi, Silvia & Schoof, Justin, 2017. "Projecting corn and soybeans yields under climate change in a Corn Belt watershed," Agricultural Systems, Elsevier, vol. 152(C), pages 90-99.
    11. Wen Wang & Huamin Liu & Jinghui Zhang & Zhiyong Li & Lixin Wang & Zheng Wang & Yantao Wu & Yang Wang & Cunzhu Liang, 2020. "Effect of Grazing Types on Community-Weighted Mean Functional Traits and Ecosystem Functions on Inner Mongolian Steppe, China," Sustainability, MDPI, vol. 12(17), pages 1-15, September.
    12. Jahan Zeb Khan & Muhammad Zaheer, 2018. "Impacts Of Environmental Changeability And Human Activities On Hydrological Processes And Response ," Environmental Contaminants Reviews (ECR), Zibeline International Publishing, vol. 1(1), pages 13-17, June.
    13. Wenmin Zhang & Guy Schurgers & Josep Peñuelas & Rasmus Fensholt & Hui Yang & Jing Tang & Xiaowei Tong & Philippe Ciais & Martin Brandt, 2023. "Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Tianjie Lei & Jianjun Wu & Jiabao Wang & Changliang Shao & Weiwei Wang & Dongpan Chen & Xiangyu Li, 2022. "The Net Influence of Drought on Grassland Productivity over the Past 50 Years," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    15. Mingming Li & Xingchang Zhang & Qing Zhen & Fengpeng Han, 2013. "Spatial Analysis of Soil Organic Carbon in Zhifanggou Catchment of the Loess Plateau," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-7, December.
    16. Yuxuan Gou & Dong Liu & Xiangjun Liu & Zhiqing Zhuo & Chongyang Shen & Yunjia Liu & Meng Cao & Yuangfang Huang, 2022. "Scale-Location Dependence Relationship between Soil Organic Matter and Environmental Factors by Anisotropy Analysis and Multiple Wavelet Coherence," Sustainability, MDPI, vol. 14(19), pages 1-15, October.
    17. Xiaobo Zhu & Honglin He & Mingguo Ma & Xiaoli Ren & Li Zhang & Fawei Zhang & Yingnian Li & Peili Shi & Shiping Chen & Yanfen Wang & Xiaoping Xin & Yaoming Ma & Yu Zhang & Mingyuan Du & Rong Ge & Na Ze, 2020. "Estimating Ecosystem Respiration in the Grasslands of Northern China Using Machine Learning: Model Evaluation and Comparison," Sustainability, MDPI, vol. 12(5), pages 1-17, March.
    18. Litong Chen & Dan F B Flynn & Xin Jing & Peter Kühn & Thomas Scholten & Jin-Sheng He, 2015. "A Comparison of Two Methods for Quantifying Soil Organic Carbon of Alpine Grasslands on the Tibetan Plateau," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-15, May.
    19. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "Assessing nitrogen controls on carbon, water and energy exchanges in major plant functional types across North America using a carbon and nitrogen coupled ecosystem model," Ecological Modelling, Elsevier, vol. 323(C), pages 12-27.
    20. Xuanyu Tao & Zhifeng Yang & Jiajie Feng & Siyang Jian & Yunfeng Yang & Colin T. Bates & Gangsheng Wang & Xue Guo & Daliang Ning & Megan L. Kempher & Xiao Jun A. Liu & Yang Ouyang & Shun Han & Linwei W, 2024. "Experimental warming accelerates positive soil priming in a temperate grassland ecosystem," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2856-:d:232612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.