IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v30y2024i1d10.1007_s10985-023-09590-y.html
   My bibliography  Save this article

RKHS-based covariate balancing for survival causal effect estimation

Author

Listed:
  • Wu Xue

    (Meta Platforms Inc.)

  • Xiaoke Zhang

    (George Washington University)

  • Kwun Chuen Gary Chan

    (University of Washington)

  • Raymond K. W. Wong

    (Texas A &M University)

Abstract

Survival causal effect estimation based on right-censored data is of key interest in both survival analysis and causal inference. Propensity score weighting is one of the most popular methods in the literature. However, since it involves the inverse of propensity score estimates, its practical performance may be very unstable, especially when the covariate overlap is limited between treatment and control groups. To address this problem, a covariate balancing method is developed in this paper to estimate the counterfactual survival function. The proposed method is nonparametric and balances covariates in a reproducing kernel Hilbert space (RKHS) via weights that are counterparts of inverse propensity scores. The uniform rate of convergence for the proposed estimator is shown to be the same as that for the classical Kaplan–Meier estimator. The appealing practical performance of the proposed method is demonstrated by a simulation study as well as two real data applications to study the causal effect of smoking on survival time of stroke patients and that of endotoxin on survival time for female patients with lung cancer respectively.

Suggested Citation

  • Wu Xue & Xiaoke Zhang & Kwun Chuen Gary Chan & Raymond K. W. Wong, 2024. "RKHS-based covariate balancing for survival causal effect estimation," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(1), pages 34-58, January.
  • Handle: RePEc:spr:lifeda:v:30:y:2024:i:1:d:10.1007_s10985-023-09590-y
    DOI: 10.1007/s10985-023-09590-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-023-09590-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-023-09590-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    2. Lan Wen & Jessica G. Young & James M. Robins & Miguel A. Hernán, 2021. "Parametric g‐formula implementations for causal survival analyses," Biometrics, The International Biometric Society, vol. 77(2), pages 740-753, June.
    3. Donald, Stephen G. & Hsu, Yu-Chin, 2014. "Estimation and inference for distribution functions and quantile functions in treatment effect models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 383-397.
    4. Kosuke Imai & Marc Ratkovic, 2014. "Covariate balancing propensity score," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 243-263, January.
    5. Kwun Chuen Gary Chan & Sheung Chi Phillip Yam & Zheng Zhang, 2016. "Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 673-700, June.
    6. Zhang, Xiaoke & Xue, Wu & Wang, Qiyue, 2021. "Covariate balancing functional propensity score for functional treatments in cross-sectional observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    7. José R. Zubizarreta, 2015. "Stable Weights that Balance Covariates for Estimation With Incomplete Outcome Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 910-922, September.
    8. Stitelman Ori M & Wester C. William & De Gruttola Victor & van der Laan Mark J., 2011. "Targeted Maximum Likelihood Estimation of Effect Modification Parameters in Survival Analysis," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-34, March.
    9. Yixin Wang & Jose R Zubizarreta, 2020. "Minimal dispersion approximately balancing weights: asymptotic properties and practical considerations," Biometrika, Biometrika Trust, vol. 107(1), pages 93-105.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    2. repec:kan:wpaper:202315 is not listed on IDEAS
    3. Ai, Chunrong & Linton, Oliver & Zhang, Zheng, 2022. "Estimation and inference for the counterfactual distribution and quantile functions in continuous treatment models," Journal of Econometrics, Elsevier, vol. 228(1), pages 39-61.
    4. Vahe Avagyan & Stijn Vansteelandt, 2021. "Stable inverse probability weighting estimation for longitudinal studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 1046-1067, September.
    5. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.
    6. Sean Yiu & Li Su, 2022. "Joint calibrated estimation of inverse probability of treatment and censoring weights for marginal structural models," Biometrics, The International Biometric Society, vol. 78(1), pages 115-127, March.
    7. Yimin Dai & Ying Yan, 2024. "Mahalanobis balancing: A multivariate perspective on approximate covariate balancing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(4), pages 1450-1471, December.
    8. Zongwu Cai & Ying Fang & Ming Lin & Yaqian Wu, 2024. "Estimating Counterfactual Distribution Functions via Optimal Distribution Balancing with Applications," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202415, University of Kansas, Department of Economics.
    9. Ruoqi Yu, 2021. "Evaluating and improving a matched comparison of antidepressants and bone density," Biometrics, The International Biometric Society, vol. 77(4), pages 1276-1288, December.
    10. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    11. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    12. Dasom Lee & Shu Yang & Lin Dong & Xiaofei Wang & Donglin Zeng & Jianwen Cai, 2023. "Improving trial generalizability using observational studies," Biometrics, The International Biometric Society, vol. 79(2), pages 1213-1225, June.
    13. María de los Angeles Resa & José R. Zubizarreta, 2020. "Direct and stable weight adjustment in non‐experimental studies with multivalued treatments: analysis of the effect of an earthquake on post‐traumatic stress," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1387-1410, October.
    14. Cousineau, Martin & Verter, Vedat & Murphy, Susan A. & Pineau, Joelle, 2023. "Estimating causal effects with optimization-based methods: A review and empirical comparison," European Journal of Operational Research, Elsevier, vol. 304(2), pages 367-380.
    15. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    16. Rui Chen & Guanhua Chen & Menggang Yu, 2023. "Entropy balancing for causal generalization with target sample summary information," Biometrics, The International Biometric Society, vol. 79(4), pages 3179-3190, December.
    17. Phillip Heiler, 2022. "Efficient Covariate Balancing for the Local Average Treatment Effect," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1569-1582, October.
    18. Zhang, Xiaoke & Xue, Wu & Wang, Qiyue, 2021. "Covariate balancing functional propensity score for functional treatments in cross-sectional observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    19. Tang, Shengfang & Zhan, Mingfeng & Jiang, Qingshan & Zhang, Tong, 2024. "Efficient covariate balancing for the average treatment effect with missing outcome," Economics Letters, Elsevier, vol. 244(C).
    20. Sean Yiu & Li Su, 2018. "Covariate association eliminating weights: a unified weighting framework for causal effect estimation," Biometrika, Biometrika Trust, vol. 105(3), pages 709-722.
    21. Martin Cousineau & Vedat Verter & Susan A. Murphy & Joelle Pineau, 2022. "Estimating causal effects with optimization-based methods: A review and empirical comparison," Papers 2203.00097, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:30:y:2024:i:1:d:10.1007_s10985-023-09590-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.