IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v26y2023i6d10.1007_s10951-021-00690-x.html
   My bibliography  Save this article

Competitive algorithms for demand response management in a smart grid

Author

Listed:
  • Vincent Chau

    (Southeast University)

  • Shengzhong Feng

    (Chinese Academy of Sciences
    National Supercomputing Centre in Shenzhen)

  • Nguyễn Kim Thắng

    (IBISC, University Paris Saclay)

Abstract

We consider a scheduling problem that abstracts a model of demand response management in a smart grid. We investigate the problem with a set of unrelated machines, and each job j (representing a client demand) is characterized by its release date, and its power request function expressing its request demand at specific times. Each machine has an energy power function, and the energy cost incurred at a time depends on the load of the machine at that time. The goal is to find a non-migrative schedule that minimizes the total energy. We give a competitive algorithm for the problem in the online setting where the competitive ratio depends (only) on the power functions of machines. In the setting with typical energy function $$P(z) = z^{\nu }$$ P ( z ) = z ν , the algorithm is $$\varTheta (\nu ^{\nu })$$ Θ ( ν ν ) -competitive, which is optimal up to a constant factor. Our algorithm is robust in the sense that the guarantee holds for arbitrary request demands of clients. This enables flexibility on the choices of clients in shaping their demands—a desired property in a smart grid. We also consider a particular case in the offline setting in which jobs have unit processing time, constant power request, and identical machines with energy function $$P(z) = z^{\nu }$$ P ( z ) = z ν . We present a $$2^{\nu }$$ 2 ν -approximation algorithm for this case.

Suggested Citation

  • Vincent Chau & Shengzhong Feng & Nguyễn Kim Thắng, 2023. "Competitive algorithms for demand response management in a smart grid," Journal of Scheduling, Springer, vol. 26(6), pages 535-542, December.
  • Handle: RePEc:spr:jsched:v:26:y:2023:i:6:d:10.1007_s10951-021-00690-x
    DOI: 10.1007/s10951-021-00690-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-021-00690-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-021-00690-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kan Fang & Nelson A. Uhan & Fu Zhao & John W. Sutherland, 2016. "Scheduling on a single machine under time-of-use electricity tariffs," Annals of Operations Research, Springer, vol. 238(1), pages 199-227, March.
    2. Kan Fang & Nelson Uhan & Fu Zhao & John Sutherland, 2016. "Scheduling on a single machine under time-of-use electricity tariffs," Annals of Operations Research, Springer, vol. 238(1), pages 199-227, March.
    3. Paul C. Bell & Prudence W. H. Wong, 2015. "Multiprocessor speed scaling for jobs with arbitrary sizes and deadlines," Journal of Combinatorial Optimization, Springer, vol. 29(4), pages 739-749, May.
    4. Mihai Burcea & Wing-Kai Hon & Hsiang-Hsuan Liu & Prudence W. H. Wong & David K. Y. Yau, 2016. "Scheduling for electricity cost in a smart grid," Journal of Scheduling, Springer, vol. 19(6), pages 687-699, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2023. "Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1091-1109.
    2. Chen, Bo & Zhang, Xiandong, 2019. "Scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 274(3), pages 900-908.
    3. Ghorbanzadeh, Masoumeh & Ranjbar, Mohammad, 2023. "Energy-aware production scheduling in the flow shop environment under sequence-dependent setup times, group scheduling and renewable energy constraints," European Journal of Operational Research, Elsevier, vol. 307(2), pages 519-537.
    4. Shun Jia & Yang Yang & Shuyu Li & Shang Wang & Anbang Li & Wei Cai & Yang Liu & Jian Hao & Luoke Hu, 2024. "The Green Flexible Job-Shop Scheduling Problem Considering Cost, Carbon Emissions, and Customer Satisfaction under Time-of-Use Electricity Pricing," Sustainability, MDPI, vol. 16(6), pages 1-22, March.
    5. Michal Penn & Tal Raviv, 2021. "Complexity and algorithms for min cost and max profit scheduling under time-of-use electricity tariffs," Journal of Scheduling, Springer, vol. 24(1), pages 83-102, February.
    6. Seokgi Lee & Mona Issabakhsh & Hyun Woo Jeon & Seong Wook Hwang & Byung Chung, 2020. "Idle time and capacity control for a single machine scheduling problem with dynamic electricity pricing," Operations Management Research, Springer, vol. 13(3), pages 197-217, December.
    7. Jules Raymond Kala & Didier Michael Kre & Armelle N’Guessan Gnassou & Jean Robert Kamdjoug Kala & Yves Melaine Akpablin Akpablin & Tiorna Coulibaly, 2022. "Assets management on electrical grid using Faster-RCNN," Annals of Operations Research, Springer, vol. 308(1), pages 307-320, January.
    8. Xiangxin An & Guojin Si & Tangbin Xia & Qinming Liu & Yaping Li & Rui Miao, 2022. "Operation and Maintenance Optimization for Manufacturing Systems with Energy Management," Energies, MDPI, vol. 15(19), pages 1-19, October.
    9. Shen, Liji & Dauzère-Pérès, Stéphane & Maecker, Söhnke, 2023. "Energy cost efficient scheduling in flexible job-shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 310(3), pages 992-1016.
    10. Wu, Xueqi & Che, Ada, 2020. "Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search," Omega, Elsevier, vol. 94(C).
    11. Wu, Xueqi & Che, Ada, 2019. "A memetic differential evolution algorithm for energy-efficient parallel machine scheduling," Omega, Elsevier, vol. 82(C), pages 155-165.
    12. Tian, Zheng & Zheng, Li, 2024. "Single machine parallel-batch scheduling under time-of-use electricity prices: New formulations and optimisation approaches," European Journal of Operational Research, Elsevier, vol. 312(2), pages 512-524.
    13. Ruilin Pan & Qiong Wang & Zhenghong Li & Jianhua Cao & Yongjin Zhang, 2022. "Steelmaking-continuous casting scheduling problem with multi-position refining furnaces under time-of-use tariffs," Annals of Operations Research, Springer, vol. 310(1), pages 119-151, March.
    14. Aghelinejad, MohammadMohsen & Ouazene, Yassine & Yalaoui, Alice, 2019. "Complexity analysis of energy-efficient single machine scheduling problems," Operations Research Perspectives, Elsevier, vol. 6(C).
    15. Lin Chen & Nicole Megow & Roman Rischke & Leen Stougie & José Verschae, 2021. "Optimal algorithms for scheduling under time-of-use tariffs," Annals of Operations Research, Springer, vol. 304(1), pages 85-107, September.
    16. Gaggero, Mauro & Paolucci, Massimo & Ronco, Roberto, 2023. "Exact and heuristic solution approaches for energy-efficient identical parallel machine scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 311(3), pages 845-866.
    17. Peng Wu & Junheng Cheng & Feng Chu, 2021. "Large-scale energy-conscious bi-objective single-machine batch scheduling under time-of-use electricity tariffs via effective iterative heuristics," Annals of Operations Research, Springer, vol. 296(1), pages 471-494, January.
    18. Heydar, Mojtaba & Mardaneh, Elham & Loxton, Ryan, 2022. "Approximate dynamic programming for an energy-efficient parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 302(1), pages 363-380.
    19. Hongliang Zhang & Yujuan Wu & Ruilin Pan & Gongjie Xu, 2021. "Two-stage parallel speed-scaling machine scheduling under time-of-use tariffs," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 91-112, January.
    20. Loeb, Benjamin & Kockelman, Kara M., 2019. "Fleet performance and cost evaluation of a shared autonomous electric vehicle (SAEV) fleet: A case study for Austin, Texas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 374-385.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:26:y:2023:i:6:d:10.1007_s10951-021-00690-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.