IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v27y2014i4d10.1007_s10959-013-0483-2.html
   My bibliography  Save this article

An Invariance Principle for Fractional Brownian Sheets

Author

Listed:
  • Yizao Wang

    (University of Cincinnati)

Abstract

We establish a central limit theorem for partial sums of stationary linear random fields with dependent innovations, and an invariance principle for anisotropic fractional Brownian sheets. Our result is a generalization of the invariance principle for fractional Brownian motions by Dedecker et al. (Bernoulli 17:88–113, 2011) to high dimensions. A key ingredient of their argument, the martingale approximation, is replaced by an $$m$$ -approximation argument. An important tool of our approach is a moment inequality for stationary random fields recently established by El Machkouri et al. (Stoch. Process. Appl. 123:1–14, 2013).

Suggested Citation

  • Yizao Wang, 2014. "An Invariance Principle for Fractional Brownian Sheets," Journal of Theoretical Probability, Springer, vol. 27(4), pages 1124-1139, December.
  • Handle: RePEc:spr:jotpro:v:27:y:2014:i:4:d:10.1007_s10959-013-0483-2
    DOI: 10.1007/s10959-013-0483-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-013-0483-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-013-0483-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Gabriel Lang & Philippe Soulier, 2000. "Convergence de mesures spectrales aléatoires et applications à des principes d'invariance," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 41-51, January.
    2. Jérôme Dedecker & Florence Merlevède & Dalibor Volný, 2007. "On the Weak Invariance Principle for Non-Adapted Sequences under Projective Criteria," Journal of Theoretical Probability, Springer, vol. 20(4), pages 971-1004, December.
    3. El Machkouri, Mohamed & Volný, Dalibor & Wu, Wei Biao, 2013. "A central limit theorem for stationary random fields," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 1-14.
    4. Florence Merlevède & Magda Peligrad, 2006. "On the Weak Invariance Principle for Stationary Sequences under Projective Criteria," Journal of Theoretical Probability, Springer, vol. 19(3), pages 647-689, December.
    5. Frédéric Lavancier, 2007. "Invariance principles for non-isotropic long memory random fields," Statistical Inference for Stochastic Processes, Springer, vol. 10(3), pages 255-282, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ulrich K. Müller & Mark W. Watson, 2022. "Spatial Correlation Robust Inference," Econometrica, Econometric Society, vol. 90(6), pages 2901-2935, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lahiri, S.N. & Robinson, Peter M., 2016. "Central limit theorems for long range dependent spatial linear processes," LSE Research Online Documents on Economics 65331, London School of Economics and Political Science, LSE Library.
    2. Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
    3. Na Zhang & Lucas Reding & Magda Peligrad, 2020. "On the Quenched Central Limit Theorem for Stationary Random Fields Under Projective Criteria," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2351-2379, December.
    4. Chen, Likai & Wang, Weining & Wu, Wei Biao, 2019. "Inference of Break-Points in High-Dimensional Time Series," IRTG 1792 Discussion Papers 2019-013, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    5. Victor Chernozhukov & Ivan Fernandez-Val & Chen Huang & Weining Wang, 2024. "Arellano-bond lasso estimator for dynamic linear panel models," CeMMAP working papers 09/24, Institute for Fiscal Studies.
    6. Zuopeng Fu & Yizao Wang, 2020. "Stable Processes with Stationary Increments Parameterized by Metric Spaces," Journal of Theoretical Probability, Springer, vol. 33(3), pages 1737-1754, September.
    7. Magda Peligrad & Dalibor Volný, 2020. "Quenched Invariance Principles for Orthomartingale-Like Sequences," Journal of Theoretical Probability, Springer, vol. 33(3), pages 1238-1265, September.
    8. Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2018. "LASSO-driven inference in time and space," CeMMAP working papers CWP36/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Chen, Likai & Wang, Weining & Wu, Wei Biao, 2017. "Dynamic semiparametric factor model with a common break," SFB 649 Discussion Papers 2017-026, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. Timothy Fortune & Magda Peligrad & Hailin Sang, 2021. "A local limit theorem for linear random fields," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 696-710, September.
    11. Davydov, Youri & Tempelman, Arkady, 2024. "Randomized limit theorems for stationary ergodic random processes and fields," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
    12. Jérôme Dedecker & Florence Merlevède & Dalibor Volný, 2007. "On the Weak Invariance Principle for Non-Adapted Sequences under Projective Criteria," Journal of Theoretical Probability, Springer, vol. 20(4), pages 971-1004, December.
    13. Hsieh, Meng-Chen & Hurvich, Clifford M. & Soulier, Philippe, 2007. "Asymptotics for duration-driven long range dependent processes," Journal of Econometrics, Elsevier, vol. 141(2), pages 913-949, December.
    14. repec:hum:wpaper:sfb649dp2017-026 is not listed on IDEAS
    15. Wang, Yizao & Woodroofe, Michael, 2014. "On the asymptotic normality of kernel density estimators for causal linear random fields," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 201-213.
    16. Nikolai Leonenko & Andriy Olenko, 2013. "Tauberian and Abelian Theorems for Long-range Dependent Random Fields," Methodology and Computing in Applied Probability, Springer, vol. 15(4), pages 715-742, December.
    17. Beran, Jan & Ghosh, Sucharita & Schell, Dieter, 2009. "On least squares estimation for long-memory lattice processes," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2178-2194, November.
    18. Puplinskaitė, Donata & Surgailis, Donatas, 2015. "Scaling transition for long-range dependent Gaussian random fields," Stochastic Processes and their Applications, Elsevier, vol. 125(6), pages 2256-2271.
    19. Steland, Ansgar, 2025. "Inference in nonlinear random fields and non-asymptotic rates for threshold variance estimators under sparse dependence," Stochastic Processes and their Applications, Elsevier, vol. 186(C).
    20. Bucchia, Béatrice & Wendler, Martin, 2017. "Change-point detection and bootstrap for Hilbert space valued random fields," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 344-368.
    21. Klicnarová, Jana & Volný, Dalibor & Wang, Yizao, 2016. "Limit theorems for weighted Bernoulli random fields under Hannan’s condition," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1819-1838.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:27:y:2014:i:4:d:10.1007_s10959-013-0483-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.