IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v186y2025ics0304414925000900.html
   My bibliography  Save this article

Inference in nonlinear random fields and non-asymptotic rates for threshold variance estimators under sparse dependence

Author

Listed:
  • Steland, Ansgar

Abstract

Inference based on the (functional) central limit theorem for nonlinear random fields is studied and generalized to the nonstationary case. For this purpose, nonparametric estimation of the variance of partial sums is studied in depth including a class of soft-thresholding estimators. Nonasymptotic convergence rates for all estimators are established. It is shown that threshold estimation is superior in terms of the convergence rate under a mild sparseness condition on the spatial covariance structure. The results also cover estimators calculated from residuals. Applications to hypothesis testing to detect effects such as tumors in CT images, regression models with external regressors, and sparse convolutional network layers are discussed.

Suggested Citation

  • Steland, Ansgar, 2025. "Inference in nonlinear random fields and non-asymptotic rates for threshold variance estimators under sparse dependence," Stochastic Processes and their Applications, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:spapps:v:186:y:2025:i:c:s0304414925000900
    DOI: 10.1016/j.spa.2025.104649
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414925000900
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2025.104649?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:186:y:2025:i:c:s0304414925000900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.