IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v205y2025i3d10.1007_s10957-025-02677-6.html
   My bibliography  Save this article

Mas-Colell Properness Condition and Almost Convexity in Nonconvex Optimization

Author

Listed:
  • Fabián Flores-Bazán

    (Universidad de Concepción)

Abstract

In last years practitioners and theorists are paying attention on general nonconvex optimization problems due to the presence of modern tools to face such problems. Our focus in this paper is dealing with the infinite dimensional setting. Firstly, associated to two different concepts of interiority, we introduce two notions of almost convexity, and establish some relationships between the function itself and its lower semicontinuous hull. Another important issue in the study of optimization problems is to know when the Fenchel subdifferential of a given nonconvex function at a reference point is nonempty. This property is analyzed in terms of the properness condition introduced, in the context of mathematical economics, by Mas-Colell. Applications to provide necessary and/or sufficient conditions for the fulfillment of strong duality property are given.

Suggested Citation

  • Fabián Flores-Bazán, 2025. "Mas-Colell Properness Condition and Almost Convexity in Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 205(3), pages 1-25, June.
  • Handle: RePEc:spr:joptap:v:205:y:2025:i:3:d:10.1007_s10957-025-02677-6
    DOI: 10.1007/s10957-025-02677-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02677-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02677-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. B. G. Frenk & G. Kassay, 1999. "On Classes of Generalized Convex Functions, Gordan–Farkas Type Theorems, and Lagrangian Duality," Journal of Optimization Theory and Applications, Springer, vol. 102(2), pages 315-343, August.
    2. J. B. G. Frenk & G. Kassay, 2007. "Lagrangian Duality and Cone Convexlike Functions," Journal of Optimization Theory and Applications, Springer, vol. 134(2), pages 207-222, August.
    3. R. I. Boţ & S. M. Grad & G. Wanka, 2007. "Fenchel’s Duality Theorem for Nearly Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 132(3), pages 509-515, March.
    4. Mas-Colell, Andreu, 1986. "The Price Equilibrium Existence Problem in Topological Vector Lattice s," Econometrica, Econometric Society, vol. 54(5), pages 1039-1053, September.
    5. Fabián Flores-Bazán & William Echegaray & Fernando Flores-Bazán & Eladio Ocaña, 2017. "Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap," Journal of Global Optimization, Springer, vol. 69(4), pages 823-845, December.
    6. G. Mastroeni, 2010. "Some applications of the image space analysis to the duality theory for constrained extremum problems," Journal of Global Optimization, Springer, vol. 46(4), pages 603-614, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabián Flores-Bazán & William Echegaray & Fernando Flores-Bazán & Eladio Ocaña, 2017. "Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap," Journal of Global Optimization, Springer, vol. 69(4), pages 823-845, December.
    2. Maria C. Maciel & Sandra A. Santos & Graciela N. Sottosanto, 2016. "On the Fritz John saddle point problem for differentiable multiobjective optimization," OPSEARCH, Springer;Operational Research Society of India, vol. 53(4), pages 917-933, December.
    3. Aliprantis, Charalambos D. & Florenzano, Monique & Tourky, Rabee, 2005. "Linear and non-linear price decentralization," Journal of Economic Theory, Elsevier, vol. 121(1), pages 51-74, March.
    4. Besada, M. & Vazquez, C., 1999. "The generalized marginal rate of substitution," Journal of Mathematical Economics, Elsevier, vol. 31(4), pages 553-560, May.
    5. Radu Boţ & Sorin-Mihai Grad & Gert Wanka, 2007. "A general approach for studying duality in multiobjective optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(3), pages 417-444, June.
    6. Basile, Achille & Graziano, Maria Gabriella & Papadaki, Maria & Polyrakis, Ioannis A., 2017. "Cones with semi-interior points and equilibrium," Journal of Mathematical Economics, Elsevier, vol. 71(C), pages 36-48.
    7. Charalambos Aliprantis & Kim Border & Owen Burkinshaw, 1996. "Market economies with many commodities," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 19(1), pages 113-185, March.
    8. Frenk, J.B.G. & Kassay, G., 2005. "Lagrangian duality and cone convexlike functions," ERIM Report Series Research in Management ERS-2005-019-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    9. Nizar Allouch & Monique Florenzano, 2004. "Edgeworth and Walras equilibria of an arbitrage-free exchange economy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 23(2), pages 353-370, January.
    10. Tourky, Rabee, 1999. "Production equilibria in locally proper economies with unbounded and unordered consumers," Journal of Mathematical Economics, Elsevier, vol. 32(3), pages 303-315, November.
    11. Khan, M. Ali & Tourky, Rabee & Vohra, Rajiv, 1999. "The supremum argument in the new approach to the existence of equilibrium in vector lattices," Economics Letters, Elsevier, vol. 63(1), pages 61-65, April.
    12. Ostroy, Joseph M & Zame, William R, 1994. "Nonatomic Economies and the Boundaries of Perfect Competition," Econometrica, Econometric Society, vol. 62(3), pages 593-633, May.
    13. Luisa Montuschi & Omar Chisari, 2016. "En memoria de Julio H. G. Olivera (1929 – 2016)," Económica, Instituto de Investigaciones Económicas, Facultad de Ciencias Económicas, Universidad Nacional de La Plata, vol. 0(1), pages 3-21, January-D.
    14. Letizia Pellegrini & Shengkun Zhu, 2018. "Constrained Extremum Problems, Regularity Conditions and Image Space Analysis. Part II: The Vector Finite-Dimensional Case," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 788-810, June.
    15. Anna Martellotti, 2007. "Core equivalence theorem: countably many types of agents and commodities in $\vec{L}^{1}(\mu)$," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 30(1), pages 51-70, May.
    16. Aliprantis, C. D. & Florenzano, M. & Martins-da-Rocha, V. F. & Tourky, R., 2004. "Equilibrium analysis in financial markets with countably many securities," Journal of Mathematical Economics, Elsevier, vol. 40(6), pages 683-699, September.
    17. Aliprantis, C. D. & Tourky, R. & Yannelis, N. C., 2000. "The Riesz-Kantorovich formula and general equilibrium theory," Journal of Mathematical Economics, Elsevier, vol. 34(1), pages 55-76, August.
    18. Marakulin, Valeri M., 1998. "Production equilibria in vector lattices with unordered preferences : an approach using finite-dimensional approximations," CEPREMAP Working Papers (Couverture Orange) 9821, CEPREMAP.
    19. Xanthos, Foivos, 2014. "A note on the equilibrium theory of economies with asymmetric information," Journal of Mathematical Economics, Elsevier, vol. 55(C), pages 1-3.
    20. Chatterjee, Kalyan & Vijay Krishna, R., 2011. "A nonsmooth approach to nonexpected utility theory under risk," Mathematical Social Sciences, Elsevier, vol. 62(3), pages 166-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:205:y:2025:i:3:d:10.1007_s10957-025-02677-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.