IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v205y2025i2d10.1007_s10957-025-02645-0.html
   My bibliography  Save this article

On the Optimal Vaccination Control of SIR Model with Erlang-Distributed Infectious Period

Author

Listed:
  • Luca Bolzoni

    (Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna)

  • Rossella Della Marca

    (SISSA – International School for Advanced Studies)

Abstract

In this work, we investigate optimal vaccination strategies in SIR models with Erlang-distributed infectious period (the Erlang distribution is a gamma distribution with integer shape parameter). We consider the problem of minimizing the epidemic burden under either limited vaccination resources or linear costs of vaccination. By applying the Pontryagin’s minimum principle, we prove that both the optimal control problems admit only bang–bang solutions with at most one switch, the one-switch control being the case of reactive vaccination. We show that different assumptions on the infectious period distribution may lead to qualitatively and quantitatively different shapes of the optimal control. The main results are the following. We prove that in the absence of control the epidemic burden in SIR models is the same irrespectively of the infectious period distribution. However, when the vaccination resources are limiting, the optimal control problem leads to solutions where the epidemic burden is larger (and the time needed to complete vaccination campaigns is longer) in models with Erlang-distributed infectious periods with respect to exponential ones.

Suggested Citation

  • Luca Bolzoni & Rossella Della Marca, 2025. "On the Optimal Vaccination Control of SIR Model with Erlang-Distributed Infectious Period," Journal of Optimization Theory and Applications, Springer, vol. 205(2), pages 1-31, May.
  • Handle: RePEc:spr:joptap:v:205:y:2025:i:2:d:10.1007_s10957-025-02645-0
    DOI: 10.1007/s10957-025-02645-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02645-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02645-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Helen J Wearing & Pejman Rohani & Matt J Keeling, 2005. "Appropriate Models for the Management of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 2(7), pages 1-1, July.
    2. Oluwaseun Sharomi & Tufail Malik, 2017. "Optimal control in epidemiology," Annals of Operations Research, Springer, vol. 251(1), pages 55-71, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lahrouz, A. & El Mahjour, H. & Settati, A. & Bernoussi, A., 2018. "Dynamics and optimal control of a non-linear epidemic model with relapse and cure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 299-317.
    2. Richard C. Larson, 2007. "Simple Models of Influenza Progression Within a Heterogeneous Population," Operations Research, INFORMS, vol. 55(3), pages 399-412, June.
    3. repec:plo:pcbi00:1003312 is not listed on IDEAS
    4. Robin N Thompson & Christopher A Gilligan & Nik J Cunniffe, 2016. "Detecting Presymptomatic Infection Is Necessary to Forecast Major Epidemics in the Earliest Stages of Infectious Disease Outbreaks," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-18, April.
    5. Victoria Chebotaeva & Paula A. Vasquez, 2023. "Erlang-Distributed SEIR Epidemic Models with Cross-Diffusion," Mathematics, MDPI, vol. 11(9), pages 1-18, May.
    6. Daniele Proverbio & Françoise Kemp & Stefano Magni & Andreas Husch & Atte Aalto & Laurent Mombaerts & Alexander Skupin & Jorge Gonçalves & Jose Ameijeiras-Alonso & Christophe Ley, 2021. "Dynamical SPQEIR model assesses the effectiveness of non-pharmaceutical interventions against COVID-19 epidemic outbreaks," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-21, May.
    7. Bekiros, Stelios & Kouloumpou, Dimitra, 2020. "SBDiEM: A new mathematical model of infectious disease dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    8. Carbone, Giuseppe & De Vincenzo, Ilario, 2022. "A general theory for infectious disease dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    9. Peace, Angela & O’Regan, Suzanne M. & Spatz, Jennifer A. & Reilly, Patrick N. & Hill, Rachel D. & Carter, E. Davis & Wilkes, Rebecca P. & Waltzek, Thomas B. & Miller, Debra L. & Gray, Matthew J., 2019. "A highly invasive chimeric ranavirus can decimate tadpole populations rapidly through multiple transmission pathways," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    10. Hornstein Andreas, 2022. "Quarantine, Contact Tracing, and Testing: Implications of an Augmented SEIR Model," The B.E. Journal of Macroeconomics, De Gruyter, vol. 22(1), pages 53-88, January.
    11. Miclo, Laurent & Spiro, Daniel & Weibull, Jörgen, 2022. "Optimal epidemic suppression under an ICU constraint: An analytical solution," Journal of Mathematical Economics, Elsevier, vol. 101(C).
    12. Michael A Johansson & Neysarí Arana-Vizcarrondo & Brad J Biggerstaff & J Erin Staples & Nancy Gallagher & Nina Marano, 2011. "On the Treatment of Airline Travelers in Mathematical Models," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-7, July.
    13. Michela Baccini & Giulia Cereda & Cecilia Viscardi, 2021. "The first wave of the SARS-CoV-2 epidemic in Tuscany (Italy): A SI2R2D compartmental model with uncertainty evaluation," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-23, April.
    14. Emma E. Goldberg & Qianying Lin & Ethan O. Romero-Severson & Ruian Ke, 2023. "Swift and extensive Omicron outbreak in China after sudden exit from ‘zero-COVID’ policy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Annemarie Bouma & Ivo Claassen & Ketut Natih & Don Klinkenberg & Christl A Donnelly & Guus Koch & Michiel van Boven, 2009. "Estimation of Transmission Parameters of H5N1 Avian Influenza Virus in Chickens," PLOS Pathogens, Public Library of Science, vol. 5(1), pages 1-13, January.
    16. Ross, J.V. & Pagendam, D.E. & Pollett, P.K., 2009. "On parameter estimation in population models II: Multi-dimensional processes and transient dynamics," Theoretical Population Biology, Elsevier, vol. 75(2), pages 123-132.
    17. Imane Abouelkheir & Fadwa El Kihal & Mostafa Rachik & Ilias Elmouki, 2019. "Optimal Impulse Vaccination Approach for an SIR Control Model with Short-Term Immunity," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
    18. Ozgur M. Araz & Mayteé Cruz-Aponte & Fernando A. Wilson & Brock W. Hanisch & Ruth S. Margalit, 2022. "An Analytic Framework for Effective Public Health Program Design Using Correctional Facilities," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 113-128, January.
    19. Lili Zhuang & Noel Cressie, 2014. "Bayesian hierarchical statistical SIRS models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(4), pages 601-646, November.
    20. Hee-Koung Joeng & Abidemi K. Adeniji & Naitee Ting & Ming-Hui Chen, 2022. "Estimation of Discrete Survival Function through Modeling Diagnostic Accuracy for Mismeasured Outcome Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(1), pages 105-138, April.
    21. Pilar Hernández & Carlos Pena & Alberto Ramos & Juan José Gómez-Cadenas, 2021. "A new formulation of compartmental epidemic modelling for arbitrary distributions of incubation and removal times," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-22, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:205:y:2025:i:2:d:10.1007_s10957-025-02645-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.