IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v204y2025i3d10.1007_s10957-024-02574-4.html
   My bibliography  Save this article

A Progressive Decoupling Algorithm for Minimizing the Difference of Convex and Weakly Convex Functions

Author

Listed:
  • Welington de Oliveira

    (Mines Paris, Université PSL, Centre de Mathématiques Appliquées (CMA))

  • João Carlos de Oliveira Souza

    (Federal University of Piauí)

Abstract

Commonly, decomposition and splitting techniques for optimization problems strongly depend on convexity. Implementable splitting methods for nonconvex and nonsmooth optimization problems are scarce and often lack convergence guarantees. Among the few exceptions is the Progressive Decoupling Algorithm (PDA), which has local convergence should convexity be elicitable. In this work, we furnish PDA with a descent test and extend the method to accommodate a broad class of nonsmooth optimization problems with non-elicitable convexity. More precisely, we focus on the problem of minimizing the difference of convex and weakly convex functions over a linear subspace. This framework covers, in particular, a family of stochastic programs with nonconvex recourse and statistical estimation problems for supervised learning.

Suggested Citation

  • Welington de Oliveira & João Carlos de Oliveira Souza, 2025. "A Progressive Decoupling Algorithm for Minimizing the Difference of Convex and Weakly Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 204(3), pages 1-24, March.
  • Handle: RePEc:spr:joptap:v:204:y:2025:i:3:d:10.1007_s10957-024-02574-4
    DOI: 10.1007/s10957-024-02574-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02574-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02574-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. VIAL, Jean-Philippe, 1983. "Strong and weak convexity of sets and functions," LIDAM Reprints CORE 529, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maćkowiak, Piotr, 2009. "Adaptive Rolling Plans Are Good," MPRA Paper 42043, University Library of Munich, Germany.
    2. Sorger, Gerhard, 2004. "Consistent planning under quasi-geometric discounting," Journal of Economic Theory, Elsevier, vol. 118(1), pages 118-129, September.
    3. Lee, Jinkyu & Bae, Sanghyeon & Kim, Woo Chang & Lee, Yongjae, 2023. "Value function gradient learning for large-scale multistage stochastic programming problems," European Journal of Operational Research, Elsevier, vol. 308(1), pages 321-335.
    4. Lars M. Hvattum & Arne Løkketangen & Gilbert Laporte, 2006. "Solving a Dynamic and Stochastic Vehicle Routing Problem with a Sample Scenario Hedging Heuristic," Transportation Science, INFORMS, vol. 40(4), pages 421-438, November.
    5. Xin Huang & Duan Li & Daniel Zhuoyu Long, 2020. "Scenario-decomposition Solution Framework for Nonseparable Stochastic Control Problems," Papers 2010.08985, arXiv.org.
    6. Özgün Elçi & John Hooker, 2022. "Stochastic Planning and Scheduling with Logic-Based Benders Decomposition," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2428-2442, September.
    7. Gauvin, Charles & Delage, Erick & Gendreau, Michel, 2017. "Decision rule approximations for the risk averse reservoir management problem," European Journal of Operational Research, Elsevier, vol. 261(1), pages 317-336.
    8. Castro, Jordi & Escudero, Laureano F. & Monge, Juan F., 2023. "On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 268-285.
    9. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    10. Zhao, Liang & Rong, Jiyun & Ma, Guofu & Liang, Chen & Long, Jian, 2025. "Multi-stage stochastic programming for integrated optimization of ethylene production processes and utility systems under uncertainty," Energy, Elsevier, vol. 320(C).
    11. Shuvomoy Das Gupta & Bartolomeo Stellato & Bart P. G. Parys, 2024. "Exterior-Point Optimization for Sparse and Low-Rank Optimization," Journal of Optimization Theory and Applications, Springer, vol. 202(2), pages 795-833, August.
    12. Kevin Ryan & Shabbir Ahmed & Santanu S. Dey & Deepak Rajan & Amelia Musselman & Jean-Paul Watson, 2020. "Optimization-Driven Scenario Grouping," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 805-821, July.
    13. Sorin-Mihai Grad & Felipe Lara, 2022. "An extension of the proximal point algorithm beyond convexity," Journal of Global Optimization, Springer, vol. 82(2), pages 313-329, February.
    14. Fan, Yingjie & Schwartz, Frank & Voß, Stefan, 2017. "Flexible supply chain planning based on variable transportation modes," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 654-666.
    15. Listes, O.L. & Dekker, R., 2002. "A scenario aggregation based approach for determining a robust airline fleet composition," Econometric Institute Research Papers EI 2002-17, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Huynh Ngai & Nguyen Huu Tron & Nguyen Vu & Michel Théra, 2022. "Variational Analysis of Paraconvex Multifunctions," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 180-218, June.
    17. Teemu Pennanen & Markku Kallio, 2006. "A splitting method for stochastic programs," Annals of Operations Research, Springer, vol. 142(1), pages 259-268, February.
    18. J. X. Cruz Neto & P. R. Oliveira & A. Soubeyran & J. C. O. Souza, 2020. "A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem," Annals of Operations Research, Springer, vol. 289(2), pages 313-339, June.
    19. Barry C. Smith & Ellis L. Johnson, 2006. "Robust Airline Fleet Assignment: Imposing Station Purity Using Station Decomposition," Transportation Science, INFORMS, vol. 40(4), pages 497-516, November.
    20. Gilles Bareilles & Yassine Laguel & Dmitry Grishchenko & Franck Iutzeler & Jérôme Malick, 2020. "Randomized Progressive Hedging methods for multi-stage stochastic programming," Annals of Operations Research, Springer, vol. 295(2), pages 535-560, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:204:y:2025:i:3:d:10.1007_s10957-024-02574-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.