IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v204y2025i3d10.1007_s10957-024-02574-4.html
   My bibliography  Save this article

A Progressive Decoupling Algorithm for Minimizing the Difference of Convex and Weakly Convex Functions

Author

Listed:
  • Welington de Oliveira

    (Mines Paris, Université PSL, Centre de Mathématiques Appliquées (CMA))

  • João Carlos de Oliveira Souza

    (Federal University of Piauí)

Abstract

Commonly, decomposition and splitting techniques for optimization problems strongly depend on convexity. Implementable splitting methods for nonconvex and nonsmooth optimization problems are scarce and often lack convergence guarantees. Among the few exceptions is the Progressive Decoupling Algorithm (PDA), which has local convergence should convexity be elicitable. In this work, we furnish PDA with a descent test and extend the method to accommodate a broad class of nonsmooth optimization problems with non-elicitable convexity. More precisely, we focus on the problem of minimizing the difference of convex and weakly convex functions over a linear subspace. This framework covers, in particular, a family of stochastic programs with nonconvex recourse and statistical estimation problems for supervised learning.

Suggested Citation

  • Welington de Oliveira & João Carlos de Oliveira Souza, 2025. "A Progressive Decoupling Algorithm for Minimizing the Difference of Convex and Weakly Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 204(3), pages 1-24, March.
  • Handle: RePEc:spr:joptap:v:204:y:2025:i:3:d:10.1007_s10957-024-02574-4
    DOI: 10.1007/s10957-024-02574-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02574-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02574-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. VIAL, Jean-Philippe, 1983. "Strong and weak convexity of sets and functions," LIDAM Reprints CORE 529, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sorger, Gerhard, 2004. "Consistent planning under quasi-geometric discounting," Journal of Economic Theory, Elsevier, vol. 118(1), pages 118-129, September.
    2. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    3. Fan, Yingjie & Schwartz, Frank & Voß, Stefan, 2017. "Flexible supply chain planning based on variable transportation modes," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 654-666.
    4. Huynh Ngai & Nguyen Huu Tron & Nguyen Vu & Michel Théra, 2022. "Variational Analysis of Paraconvex Multifunctions," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 180-218, June.
    5. J. X. Cruz Neto & P. R. Oliveira & A. Soubeyran & J. C. O. Souza, 2020. "A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem," Annals of Operations Research, Springer, vol. 289(2), pages 313-339, June.
    6. Barry C. Smith & Ellis L. Johnson, 2006. "Robust Airline Fleet Assignment: Imposing Station Purity Using Station Decomposition," Transportation Science, INFORMS, vol. 40(4), pages 497-516, November.
    7. Andreatta, Giovanni & Dell'Olmo, Paolo & Lulli, Guglielmo, 2011. "An aggregate stochastic programming model for air traffic flow management," European Journal of Operational Research, Elsevier, vol. 215(3), pages 697-704, December.
    8. Huang, Edward & Mital, Pratik & Goetschalckx, Marc & Wu, Kan, 2016. "Optimal assignment of airport baggage unloading zones to outgoing flights," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 110-122.
    9. Hu, Shaolong & Han, Chuanfeng & Dong, Zhijie Sasha & Meng, Lingpeng, 2019. "A multi-stage stochastic programming model for relief distribution considering the state of road network," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 64-87.
    10. Zhicheng Zhu & Yisha Xiang & Bo Zeng, 2021. "Multicomponent Maintenance Optimization: A Stochastic Programming Approach," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 898-914, July.
    11. Gregory A. Godfrey & Warren B. Powell, 2001. "An Adaptive, Distribution-Free Algorithm for the Newsvendor Problem with Censored Demands, with Applications to Inventory and Distribution," Management Science, INFORMS, vol. 47(8), pages 1101-1112, August.
    12. Fadda, Edoardo & Manerba, Daniele & Cabodi, Gianpiero & Camurati, Paolo Enrico & Tadei, Roberto, 2021. "Comparative analysis of models and performance indicators for optimal service facility location," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    13. V.I. Norkin & G.C. Pflug & A. Ruszczynski, 1996. "A Branch and Bound Method for Stochastic Global Optimization," Working Papers wp96065, International Institute for Applied Systems Analysis.
    14. Riis, Morten & Andersen, Kim Allan, 2005. "Applying the minimax criterion in stochastic recourse programs," European Journal of Operational Research, Elsevier, vol. 165(3), pages 569-584, September.
    15. Jeffrey Christiansen & Brian Dandurand & Andrew Eberhard & Fabricio Oliveira, 2023. "A study of progressive hedging for stochastic integer programming," Computational Optimization and Applications, Springer, vol. 86(3), pages 989-1034, December.
    16. Alexander Franz & Julia Rieck & Jürgen Zimmermann, 2019. "Fix-and-optimize procedures for solving the long-term unit commitment problem with pumped storages," Annals of Operations Research, Springer, vol. 274(1), pages 241-265, March.
    17. T. R. Gulati & I. Ahmad & D. Agarwal, 2007. "Sufficiency and Duality in Multiobjective Programming under Generalized Type I Functions," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 411-427, December.
    18. Guo, Zhaomiao & Fan, Yueyue, 2017. "A Stochastic Multi-Agent Optimization Model for Energy Infrastructure Planning Under Uncertainty and Competition," Institute of Transportation Studies, Working Paper Series qt89s5s8hn, Institute of Transportation Studies, UC Davis.
    19. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    20. Gyana R. Parija & Shabbir Ahmed & Alan J. King, 2004. "On Bridging the Gap Between Stochastic Integer Programming and MIP Solver Technologies," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 73-83, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:204:y:2025:i:3:d:10.1007_s10957-024-02574-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.