IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v203y2024i2d10.1007_s10957-023-02268-3.html
   My bibliography  Save this article

Retraction-Based Direct Search Methods for Derivative Free Riemannian Optimization

Author

Listed:
  • Vyacheslav Kungurtsev

    (Czech Technical University)

  • Francesco Rinaldi

    (Università di Padova)

  • Damiano Zeffiro

    (Università di Padova)

Abstract

Direct search methods represent a robust and reliable class of algorithms for solving black-box optimization problems. In this paper, the application of those strategies is exported to Riemannian optimization, wherein minimization is to be performed with respect to variables restricted to lie on a manifold. More specifically, classic and linesearch extrapolated variants of direct search are considered, and tailored strategies are devised for the minimization of both smooth and nonsmooth functions, by making use of retractions. A class of direct search algorithms for minimizing nonsmooth objectives on a Riemannian manifold without having access to (sub)derivatives is analyzed for the first time in the literature. Along with convergence guarantees, a set of numerical performance illustrations on a standard set of problems is provided.

Suggested Citation

  • Vyacheslav Kungurtsev & Francesco Rinaldi & Damiano Zeffiro, 2024. "Retraction-Based Direct Search Methods for Derivative Free Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1710-1735, November.
  • Handle: RePEc:spr:joptap:v:203:y:2024:i:2:d:10.1007_s10957-023-02268-3
    DOI: 10.1007/s10957-023-02268-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02268-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02268-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charles Audet & Sébastien Le Digabel & Mathilde Peyrega, 2015. "Linear equalities in blackbox optimization," Computational Optimization and Applications, Springer, vol. 61(1), pages 1-23, May.
    2. S. Hosseini & M. R. Pouryayevali, 2013. "Nonsmooth Optimization Techniques on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 328-342, August.
    3. David W. Dreisigmeyer, 2018. "Direct Search Methods on Reductive Homogeneous Spaces," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 585-604, March.
    4. Yurii NESTEROV & Vladimir SPOKOINY, 2017. "Random gradient-free minimization of convex functions," LIDAM Reprints CORE 2851, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. V. Kungurtsev & F. Rinaldi, 2021. "A zeroth order method for stochastic weakly convex optimization," Computational Optimization and Applications, Springer, vol. 80(3), pages 731-753, December.
    2. Hoang Tran & Qiang Du & Guannan Zhang, 2025. "Convergence analysis for a nonlocal gradient descent method via directional Gaussian smoothing," Computational Optimization and Applications, Springer, vol. 90(2), pages 481-513, March.
    3. Jean-Jacques Forneron, 2023. "Noisy, Non-Smooth, Non-Convex Estimation of Moment Condition Models," Papers 2301.07196, arXiv.org, revised Feb 2023.
    4. Alireza Aghasi & Saeed Ghadimi, 2025. "Fully Zeroth-Order Bilevel Programming via Gaussian Smoothing," Journal of Optimization Theory and Applications, Springer, vol. 205(2), pages 1-39, May.
    5. Aleksandr Lobanov & Andrew Veprikov & Georgiy Konin & Aleksandr Beznosikov & Alexander Gasnikov & Dmitry Kovalev, 2023. "Non-smooth setting of stochastic decentralized convex optimization problem over time-varying Graphs," Computational Management Science, Springer, vol. 20(1), pages 1-55, December.
    6. Stefan Wager & Kuang Xu, 2021. "Experimenting in Equilibrium," Management Science, INFORMS, vol. 67(11), pages 6694-6715, November.
    7. Zhongruo Wang & Krishnakumar Balasubramanian & Shiqian Ma & Meisam Razaviyayn, 2023. "Zeroth-order algorithms for nonconvex–strongly-concave minimax problems with improved complexities," Journal of Global Optimization, Springer, vol. 87(2), pages 709-740, November.
    8. S. Gratton & C. W. Royer & L. N. Vicente & Z. Zhang, 2019. "Direct search based on probabilistic feasible descent for bound and linearly constrained problems," Computational Optimization and Applications, Springer, vol. 72(3), pages 525-559, April.
    9. Rajeeva Laxman Karandikar & Mathukumalli Vidyasagar, 2024. "Convergence Rates for Stochastic Approximation: Biased Noise with Unbounded Variance, and Applications," Journal of Optimization Theory and Applications, Springer, vol. 203(3), pages 2412-2450, December.
    10. Geovani Nunes Grapiglia, 2023. "Quadratic regularization methods with finite-difference gradient approximations," Computational Optimization and Applications, Springer, vol. 85(3), pages 683-703, July.
    11. Flavia Chorobura & Ion Necoara, 2024. "Coordinate descent methods beyond smoothness and separability," Computational Optimization and Applications, Springer, vol. 88(1), pages 107-149, May.
    12. Tianyu Wang & Yasong Feng, 2024. "Convergence Rates of Zeroth Order Gradient Descent for Łojasiewicz Functions," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1611-1633, December.
    13. Youssef Diouane & Vyacheslav Kungurtsev & Francesco Rinaldi & Damiano Zeffiro, 2024. "Inexact direct-search methods for bilevel optimization problems," Computational Optimization and Applications, Springer, vol. 88(2), pages 469-490, June.
    14. David W. Dreisigmeyer, 2018. "Direct Search Methods on Reductive Homogeneous Spaces," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 585-604, March.
    15. Ghadimi, Saeed & Powell, Warren B., 2024. "Stochastic search for a parametric cost function approximation: Energy storage with rolling forecasts," European Journal of Operational Research, Elsevier, vol. 312(2), pages 641-652.
    16. Nikita Kornilov & Alexander Gasnikov & Pavel Dvurechensky & Darina Dvinskikh, 2023. "Gradient-free methods for non-smooth convex stochastic optimization with heavy-tailed noise on convex compact," Computational Management Science, Springer, vol. 20(1), pages 1-43, December.
    17. Orizon P. Ferreira & Célia Jean-Alexis & Alain Piétrus, 2017. "Metrically Regular Vector Field and Iterative Processes for Generalized Equations in Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 175(3), pages 624-651, December.
    18. Balendu Bhooshan Upadhyay & Arnav Ghosh & Savin Treanţă, 2024. "Efficiency conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 89(3), pages 723-744, July.
    19. David Kozak & Stephen Becker & Alireza Doostan & Luis Tenorio, 2021. "A stochastic subspace approach to gradient-free optimization in high dimensions," Computational Optimization and Applications, Springer, vol. 79(2), pages 339-368, June.
    20. Marco Rando & Cesare Molinari & Silvia Villa & Lorenzo Rosasco, 2024. "Stochastic zeroth order descent with structured directions," Computational Optimization and Applications, Springer, vol. 89(3), pages 691-727, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:203:y:2024:i:2:d:10.1007_s10957-023-02268-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.