IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v175y2017i3d10.1007_s10957-017-1195-z.html
   My bibliography  Save this article

Metrically Regular Vector Field and Iterative Processes for Generalized Equations in Hadamard Manifolds

Author

Listed:
  • Orizon P. Ferreira

    (Universidade Federal de Goiás)

  • Célia Jean-Alexis

    (Université des Antilles)

  • Alain Piétrus

    (Université des Antilles)

Abstract

This paper is focused on the problem of finding a singularity of the sum of two vector fields defined on a Hadamard manifold, or more precisely, the study of a generalized equation in a Riemannian setting. We extend the concept of metric regularity to the Riemannian setting and investigate its relationship with the generalized equation in this new context. In particular, a version of Graves’s theorem is presented and we also define some concepts related to metric regularity, including the Aubin property and the strong metric regularity of set-valued vector fields. A conceptual method for finding a singularity of the sum of two vector fields is also considered. This method has as particular instances: the proximal point method, Newton’s method, and Zincenko’s method on Hadamard manifolds. Under the assumption of metric regularity at the singularity, we establish that the methods are well defined in a suitable neighborhood of the singularity. Moreover, we also show that each sequence generated by these methods converges to this singularity at a superlinear rate.

Suggested Citation

  • Orizon P. Ferreira & Célia Jean-Alexis & Alain Piétrus, 2017. "Metrically Regular Vector Field and Iterative Processes for Generalized Equations in Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 175(3), pages 624-651, December.
  • Handle: RePEc:spr:joptap:v:175:y:2017:i:3:d:10.1007_s10957-017-1195-z
    DOI: 10.1007/s10957-017-1195-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1195-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1195-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. H. Wang & G. López & V. Martín-Márquez & C. Li, 2010. "Monotone and Accretive Vector Fields on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 691-708, September.
    2. S. Hosseini & M. R. Pouryayevali, 2013. "Nonsmooth Optimization Techniques on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 328-342, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. X. Cruz Neto & F. M. O. Jacinto & P. A. Soares & J. C. O. Souza, 2018. "On maximal monotonicity of bifunctions on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 72(3), pages 591-601, November.
    2. X. M. Wang & J. H. Wang & C. Li, 2023. "Convergence of Inexact Steepest Descent Algorithm for Multiobjective Optimizations on Riemannian Manifolds Without Curvature Constraints," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 187-214, July.
    3. X. M. Wang & C. Li & J. C. Yao, 2015. "Subgradient Projection Algorithms for Convex Feasibility on Riemannian Manifolds with Lower Bounded Curvatures," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 202-217, January.
    4. Glaydston C. Bento & Jefferson G. Melo, 2012. "Subgradient Method for Convex Feasibility on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 773-785, March.
    5. Guo-ji Tang & Nan-jing Huang, 2012. "Korpelevich’s method for variational inequality problems on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 54(3), pages 493-509, November.
    6. G. C. Bento & J. X. Cruz Neto, 2013. "A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 125-137, October.
    7. S. Hosseini & M. R. Pouryayevali, 2013. "Nonsmooth Optimization Techniques on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 328-342, August.
    8. G. C. Bento & O. P. Ferreira & P. R. Oliveira, 2012. "Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 88-107, July.
    9. Peng Zhang & Gejun Bao, 2018. "An Incremental Subgradient Method on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 711-727, March.
    10. Glaydston Carvalho Bento & João Xavier Cruz Neto & Paulo Roberto Oliveira, 2016. "A New Approach to the Proximal Point Method: Convergence on General Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 743-755, March.
    11. Xiangmei Wang & Chong Li & Jen-Chih Yao, 2016. "On Some Basic Results Related to Affine Functions on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 783-803, September.
    12. Fabiana R. de Oliveira & Orizon P. Ferreira, 2020. "Newton Method for Finding a Singularity of a Special Class of Locally Lipschitz Continuous Vector Fields on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 522-539, May.
    13. Fabiana R. Oliveira & Fabrícia R. Oliveira, 2021. "A Global Newton Method for the Nonsmooth Vector Fields on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 259-273, July.
    14. G. C. Bento & J. X. Cruz Neto & P. S. M. Santos, 2013. "An Inexact Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 108-124, October.
    15. J. Souza & P. Oliveira, 2015. "A proximal point algorithm for DC fuctions on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 63(4), pages 797-810, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:175:y:2017:i:3:d:10.1007_s10957-017-1195-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.