IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v185y2020i2d10.1007_s10957-020-01656-3.html
   My bibliography  Save this article

Newton Method for Finding a Singularity of a Special Class of Locally Lipschitz Continuous Vector Fields on Riemannian Manifolds

Author

Listed:
  • Fabiana R. de Oliveira

    (IME, Universidade Federal de Goiás)

  • Orizon P. Ferreira

    (IME, Universidade Federal de Goiás)

Abstract

We extend some results of nonsmooth analysis from the Euclidean context to the Riemannian setting. Particularly, we discuss the concepts and some properties, such as the Clarke generalized covariant derivative, upper semicontinuity, and Rademacher theorem, of locally Lipschitz continuous vector fields on Riemannian settings. In addition, we present a version of the Newton method for finding a singularity of a special class of locally Lipschitz continuous vector fields. For mild conditions, we establish the well-definedness and local convergence of the sequence generated using the method in a neighborhood of a singularity.

Suggested Citation

  • Fabiana R. de Oliveira & Orizon P. Ferreira, 2020. "Newton Method for Finding a Singularity of a Special Class of Locally Lipschitz Continuous Vector Fields on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 522-539, May.
  • Handle: RePEc:spr:joptap:v:185:y:2020:i:2:d:10.1007_s10957-020-01656-3
    DOI: 10.1007/s10957-020-01656-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-020-01656-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-020-01656-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O. Ferreira & A. Iusem & S. Németh, 2014. "Concepts and techniques of optimization on the sphere," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 1148-1170, October.
    2. O. Ferreira & A. Iusem & S. Németh, 2013. "Projections onto convex sets on the sphere," Journal of Global Optimization, Springer, vol. 57(3), pages 663-676, November.
    3. Teles A. Fernandes & Orizon P. Ferreira & Jinyun Yuan, 2017. "On the Superlinear Convergence of Newton’s Method on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 828-843, June.
    4. S. Hosseini & M. R. Pouryayevali, 2013. "Nonsmooth Optimization Techniques on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 328-342, August.
    5. J. H. Wang, 2011. "Convergence of Newton’s Method for Sections on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 148(1), pages 125-145, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabiana R. Oliveira & Fabrícia R. Oliveira, 2021. "A Global Newton Method for the Nonsmooth Vector Fields on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 259-273, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabiana R. Oliveira & Fabrícia R. Oliveira, 2021. "A Global Newton Method for the Nonsmooth Vector Fields on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 259-273, July.
    2. O. P. Ferreira & S. Z. Németh, 2019. "On the spherical convexity of quadratic functions," Journal of Global Optimization, Springer, vol. 73(3), pages 537-545, March.
    3. Orizon Pereira Ferreira & Sándor Zoltán Németh & Lianghai Xiao, 2020. "On the Spherical Quasi-convexity of Quadratic Functions on Spherically Subdual Convex Sets," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 1-21, October.
    4. Peng Zhang & Gejun Bao, 2018. "An Incremental Subgradient Method on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 711-727, March.
    5. Marcio Antônio de A. Bortoloti & Teles A. Fernandes & Orizon P. Ferreira & Jinyun Yuan, 2020. "Damped Newton’s method on Riemannian manifolds," Journal of Global Optimization, Springer, vol. 77(3), pages 643-660, July.
    6. Glaydston C. Bento & Jefferson G. Melo, 2012. "Subgradient Method for Convex Feasibility on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 773-785, March.
    7. G. C. Bento & J. X. Cruz Neto, 2013. "A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 125-137, October.
    8. Petre Birtea & Dan Comănescu, 2017. "Newton Algorithm on Constraint Manifolds and the 5-Electron Thomson Problem," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 563-583, May.
    9. Henri Bonnel & Léonard Todjihoundé & Constantin Udrişte, 2015. "Semivectorial Bilevel Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 464-486, November.
    10. G. C. Bento & O. P. Ferreira & P. R. Oliveira, 2012. "Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 88-107, July.
    11. Orizon P. Ferreira & Célia Jean-Alexis & Alain Piétrus, 2017. "Metrically Regular Vector Field and Iterative Processes for Generalized Equations in Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 175(3), pages 624-651, December.
    12. Teles A. Fernandes & Orizon P. Ferreira & Jinyun Yuan, 2017. "On the Superlinear Convergence of Newton’s Method on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 828-843, June.
    13. O. Ferreira & A. Iusem & S. Németh, 2014. "Concepts and techniques of optimization on the sphere," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 1148-1170, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:185:y:2020:i:2:d:10.1007_s10957-020-01656-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.