IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v199y2023i2d10.1007_s10957-023-02296-z.html
   My bibliography  Save this article

A Prediction–Correction ADMM for Multistage Stochastic Variational Inequalities

Author

Listed:
  • Ze You

    (Sichuan Normal University)

  • Haisen Zhang

    (Sichuan Normal University)

Abstract

The multistage stochastic variational inequality is reformulated into a variational inequality with separable structure through introducing a new variable. The prediction–correction ADMM which was originally proposed in He et al. (J Comput Math 24:693–710, 2006) for solving deterministic variational inequalities in finite-dimensional spaces is adapted to solve the multistage stochastic variational inequality. Weak convergence of the sequence generated by that algorithm is proved under the conditions of monotonicity and Lipschitz continuity. When the sample space is a finite set, the corresponding multistage stochastic variational inequality is actually defined on a finite-dimensional Hilbert space and the strong convergence of the algorithm naturally holds true. Some numerical examples are given to show the efficiency of the algorithm.

Suggested Citation

  • Ze You & Haisen Zhang, 2023. "A Prediction–Correction ADMM for Multistage Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 199(2), pages 693-731, November.
  • Handle: RePEc:spr:joptap:v:199:y:2023:i:2:d:10.1007_s10957-023-02296-z
    DOI: 10.1007/s10957-023-02296-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02296-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02296-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaojun Chen & Masao Fukushima, 2005. "Expected Residual Minimization Method for Stochastic Linear Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 1022-1038, November.
    2. Jie Sun & Xinmin Yang & Qiang Yao & Min Zhang, 2017. "Risk Minimization, Regret Minimization and Progressive Hedging Algorithms," Papers 1705.00340, arXiv.org, revised Jun 2020.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
    2. Xiao-Juan Zhang & Xue-Wu Du & Zhen-Ping Yang & Gui-Hua Lin, 2019. "An Infeasible Stochastic Approximation and Projection Algorithm for Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1053-1076, December.
    3. Liyan Xu & Bo Yu, 2014. "CVaR-constrained stochastic programming reformulation for stochastic nonlinear complementarity problems," Computational Optimization and Applications, Springer, vol. 58(2), pages 483-501, June.
    4. Ankur Kulkarni & Uday Shanbhag, 2012. "Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms," Computational Optimization and Applications, Springer, vol. 51(1), pages 77-123, January.
    5. Zhang, Jie & He, Su-xiang & Wang, Quan, 2014. "A SAA nonlinear regularization method for a stochastic extended vertical linear complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 888-897.
    6. Jun-zuo Li & Yi-bin Xiao, 2025. "A Modified Popov Algorithm for Non-Monotone and Non-Lipschitzian Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 205(3), pages 1-26, June.
    7. Yakui Huang & Hongwei Liu, 2016. "Smoothing projected Barzilai–Borwein method for constrained non-Lipschitz optimization," Computational Optimization and Applications, Springer, vol. 65(3), pages 671-698, December.
    8. Kramer, Anja & Krebs, Vanessa & Schmidt, Martin, 2021. "Strictly and Γ-robust counterparts of electricity market models: Perfect competition and Nash–Cournot equilibria," Operations Research Perspectives, Elsevier, vol. 8(C).
    9. Francesca Faraci & Baasansuren Jadamba & Fabio Raciti, 2016. "On Stochastic Variational Inequalities with Mean Value Constraints," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 675-693, November.
    10. Sankaranarayanan, Sriram & Feijoo, Felipe & Siddiqui, Sauleh, 2018. "Sensitivity and covariance in stochastic complementarity problems with an application to North American natural gas markets," European Journal of Operational Research, Elsevier, vol. 268(1), pages 25-36.
    11. Ying Cui & Ziyu He & Jong-Shi Pang, 2021. "Nonconvex robust programming via value-function optimization," Computational Optimization and Applications, Springer, vol. 78(2), pages 411-450, March.
    12. Yanfang Zhang & Xiaojun Chen, 2014. "Regularizations for Stochastic Linear Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 460-481, November.
    13. Jie Jiang & Hailin Sun, 2023. "Monotonicity and Complexity of Multistage Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 433-460, February.
    14. Zhang, Chao & Chen, Xiaojun & Sumalee, Agachai, 2011. "Robust Wardrop's user equilibrium assignment under stochastic demand and supply: Expected residual minimization approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 534-552, March.
    15. Wang, Guoxin & Zhang, Jin & Zeng, Bo & Lin, Gui-Hua, 2018. "Expected residual minimization formulation for a class of stochastic linear second-order cone complementarity problems," European Journal of Operational Research, Elsevier, vol. 265(2), pages 437-447.
    16. Min Li & Chao Zhang, 2020. "Two-Stage Stochastic Variational Inequality Arising from Stochastic Programming," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 324-343, July.
    17. Lu, Fang & Li, Sheng-jie, 2015. "Method of weighted expected residual for solving stochastic variational inequality problems," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 651-663.
    18. M. J. Luo & G. H. Lin, 2009. "Expected Residual Minimization Method for Stochastic Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 103-116, January.
    19. Fang Lu & Shengjie Li & Jing Yang, 2015. "Convergence analysis of weighted expected residual method for nonlinear stochastic variational inequality problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(2), pages 229-242, October.
    20. Jie Jiang & Shengjie Li, 2021. "Regularized Sample Average Approximation Approach for Two-Stage Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 650-671, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:199:y:2023:i:2:d:10.1007_s10957-023-02296-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.