IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v197y2023i2d10.1007_s10957-023-02166-8.html
   My bibliography  Save this article

An Exact Solution Algorithm for Integer Bilevel Programming with Application in Energy Market Optimization

Author

Listed:
  • George Kozanidis

    (University of Thessaly)

  • Eftychia Kostarelou

    (University of Thessaly)

Abstract

We develop an exact cutting plane solution algorithm for a special class of bilevel programming models utilized for optimal price-bidding of energy producers in day-ahead electricity markets. The proposed methodology utilizes a suitable reformulation in which a key prerequisite for global optimality, termed bilevel feasibility, is relaxed. Solving the problem to global optimality involves finding the price-offers of the strategic producer (upper-level decision variables) which maximize his self-profit upon clearing of the market and identification of the optimal energy quantity distribution (lower-level decision variables). To exclude from consideration the encountered bilevel infeasible solutions, the algorithm employs a special type of valid cuts drawn from the theory of integer parametric programming. The generation of these cuts involves finding the truly optimal lower-level solution using the strategic price-offers at the bilevel infeasible solution subject to exclusion and devising range intervals for these offers such that the optimality of this solution is retained when each of them lies in its corresponding interval. Each cut imposes a suitable part of this solution, under the condition that each price-offer belongs to its associated interval, which renders the bilevel infeasible solution invalid. We establish the theoretical framework for the development of the proposed algorithm, we illustrate its application on a small case study, and we present extensive computational results demonstrating its behavior and performance on random problem instances. These results indicate that the algorithm is capable of solving to global optimality considerably larger problems than those that a previous elementary version of the same algorithm could solve. This constitutes significant research contribution, considering the lack of generic optimization software for bilevel programming, as well as the fact that the applicability of specialized algorithms on problems of realistic size is rather limited.

Suggested Citation

  • George Kozanidis & Eftychia Kostarelou, 2023. "An Exact Solution Algorithm for Integer Bilevel Programming with Application in Energy Market Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 573-607, May.
  • Handle: RePEc:spr:joptap:v:197:y:2023:i:2:d:10.1007_s10957-023-02166-8
    DOI: 10.1007/s10957-023-02166-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02166-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02166-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2017. "A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs," Operations Research, INFORMS, vol. 65(6), pages 1615-1637, December.
    2. A. M. Geoffrion & R. Nauss, 1977. "Exceptional Paper--Parametric and Postoptimality Analysis in Integer Linear Programming," Management Science, INFORMS, vol. 23(5), pages 453-466, January.
    3. Leonardo Lozano & J. Cole Smith, 2017. "A Value-Function-Based Exact Approach for the Bilevel Mixed-Integer Programming Problem," Operations Research, INFORMS, vol. 65(3), pages 768-786, June.
    4. Liu, Shaonan & Wang, Mingzheng & Kong, Nan & Hu, Xiangpei, 2021. "An enhanced branch-and-bound algorithm for bilevel integer linear programming," European Journal of Operational Research, Elsevier, vol. 291(2), pages 661-679.
    5. George Gross & David Finlay, 2000. "Generation Supply Bidding in Perfectly Competitive Electricity Markets," Computational and Mathematical Organization Theory, Springer, vol. 6(1), pages 83-98, May.
    6. M. Köppe & M. Queyranne & C. T. Ryan, 2010. "Parametric Integer Programming Algorithm for Bilevel Mixed Integer Programs," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 137-150, July.
    7. Alexander Mitsos, 2010. "Global solution of nonlinear mixed-integer bilevel programs," Journal of Global Optimization, Springer, vol. 47(4), pages 557-582, August.
    8. Henrik C. Bylling & Steven A. Gabriel & Trine K. Boomsma, 2020. "A parametric programming approach to bilevel optimisation with lower-level variables in the upper level," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(5), pages 846-865, May.
    9. Dajun Yue & Jiyao Gao & Bo Zeng & Fengqi You, 2019. "A projection-based reformulation and decomposition algorithm for global optimization of a class of mixed integer bilevel linear programs," Journal of Global Optimization, Springer, vol. 73(1), pages 27-57, January.
    10. James T. Moore & Jonathan F. Bard, 1990. "The Mixed Integer Linear Bilevel Programming Problem," Operations Research, INFORMS, vol. 38(5), pages 911-921, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Shaonan & Kong, Nan & Parikh, Pratik & Wang, Mingzheng, 2023. "Optimal trauma care network redesign with government subsidy: A bilevel integer programming approach," Omega, Elsevier, vol. 119(C).
    2. Liu, Shaonan & Wang, Mingzheng & Kong, Nan & Hu, Xiangpei, 2021. "An enhanced branch-and-bound algorithm for bilevel integer linear programming," European Journal of Operational Research, Elsevier, vol. 291(2), pages 661-679.
    3. Soares, Inês & Alves, Maria João & Henggeler Antunes, Carlos, 2021. "A deterministic bounding procedure for the global optimization of a bi-level mixed-integer problem," European Journal of Operational Research, Elsevier, vol. 291(1), pages 52-66.
    4. Dajun Yue & Jiyao Gao & Bo Zeng & Fengqi You, 2019. "A projection-based reformulation and decomposition algorithm for global optimization of a class of mixed integer bilevel linear programs," Journal of Global Optimization, Springer, vol. 73(1), pages 27-57, January.
    5. Rahman Khorramfar & Osman Y. Özaltın & Karl G. Kempf & Reha Uzsoy, 2022. "Managing Product Transitions: A Bilevel Programming Approach," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2828-2844, September.
    6. Junlong Zhang & Osman Y. Özaltın, 2021. "Bilevel Integer Programs with Stochastic Right-Hand Sides," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1644-1660, October.
    7. Richard Oberdieck & Nikolaos A. Diangelakis & Styliani Avraamidou & Efstratios N. Pistikopoulos, 2017. "On unbounded and binary parameters in multi-parametric programming: applications to mixed-integer bilevel optimization and duality theory," Journal of Global Optimization, Springer, vol. 69(3), pages 587-606, November.
    8. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2017. "A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs," Operations Research, INFORMS, vol. 65(6), pages 1615-1637, December.
    9. Wang, Guangmin & Gao, Ziyou & Xu, Meng, 2019. "Integrating link-based discrete credit charging scheme into discrete network design problem," European Journal of Operational Research, Elsevier, vol. 272(1), pages 176-187.
    10. Moon, Kyungduk & Lee, Kangbok & Chopra, Sunil & Kwon, Steve, 2022. "Bilevel integer programming on a Boolean network for discovering critical genetic alterations in cancer development and therapy," European Journal of Operational Research, Elsevier, vol. 300(2), pages 743-754.
    11. Böttger, T. & Grimm, V. & Kleinert, T. & Schmidt, M., 2022. "The cost of decoupling trade and transport in the European entry-exit gas market with linear physics modeling," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1095-1111.
    12. Leonardo Lozano & J. Cole Smith, 2017. "A Value-Function-Based Exact Approach for the Bilevel Mixed-Integer Programming Problem," Operations Research, INFORMS, vol. 65(3), pages 768-786, June.
    13. Holger Heitsch & René Henrion & Thomas Kleinert & Martin Schmidt, 2022. "On convex lower-level black-box constraints in bilevel optimization with an application to gas market models with chance constraints," Journal of Global Optimization, Springer, vol. 84(3), pages 651-685, November.
    14. Tanınmış, Kübra & Aras, Necati & Altınel, İ. Kuban, 2022. "Improved x-space algorithm for min-max bilevel problems with an application to misinformation spread in social networks," European Journal of Operational Research, Elsevier, vol. 297(1), pages 40-52.
    15. Claudio Contardo & Jorge A. Sefair, 2022. "A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 890-908, March.
    16. Fischetti, Matteo & Monaci, Michele & Sinnl, Markus, 2018. "A dynamic reformulation heuristic for Generalized Interdiction Problems," European Journal of Operational Research, Elsevier, vol. 267(1), pages 40-51.
    17. Kosmas, Daniel & Sharkey, Thomas C. & Mitchell, John E. & Maass, Kayse Lee & Martin, Lauren, 2023. "Interdicting restructuring networks with applications in illicit trafficking," European Journal of Operational Research, Elsevier, vol. 308(2), pages 832-851.
    18. Juan S. Borrero & Leonardo Lozano, 2021. "Modeling Defender-Attacker Problems as Robust Linear Programs with Mixed-Integer Uncertainty Sets," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1570-1589, October.
    19. Maximilian Merkert & Galina Orlinskaya & Dieter Weninger, 2022. "An exact projection-based algorithm for bilevel mixed-integer problems with nonlinearities," Journal of Global Optimization, Springer, vol. 84(3), pages 607-650, November.
    20. Martelli, Emanuele & Freschini, Marco & Zatti, Matteo, 2020. "Optimization of renewable energy subsidy and carbon tax for multi energy systems using bilevel programming," Applied Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:197:y:2023:i:2:d:10.1007_s10957-023-02166-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.