IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v196y2023i2d10.1007_s10957-022-02124-w.html
   My bibliography  Save this article

Fast Convergence of Inertial Gradient Dynamics with Multiscale Aspects

Author

Listed:
  • Haixin Ren

    (Harbin Engineering University)

  • Bin Ge

    (Harbin Engineering University)

  • Xiangwu Zhuge

    (Harbin Engineering University)

Abstract

In this paper, the asymptotic properties as $$ t\rightarrow +\infty $$ t → + ∞ of the following second-order differential equation in a Hilbert space $$ {\mathcal {H}} $$ H are studied, $$\begin{aligned} \ddot{x}(t)+\gamma (t){\dot{x}}(t)+\beta (t)\Big (\nabla \Phi (x(t))+\epsilon (t)\nabla U(x(t))\Big )=0, \end{aligned}$$ x ¨ ( t ) + γ ( t ) x ˙ ( t ) + β ( t ) ( ∇ Φ ( x ( t ) ) + ϵ ( t ) ∇ U ( x ( t ) ) ) = 0 , where $$ \Phi ,U:{\mathcal {H}}\rightarrow {\mathbb {R}} $$ Φ , U : H → R are convex differentiable, $$ \gamma (t) $$ γ ( t ) is a positive damping coefficient, $$ \beta (t) $$ β ( t ) is a time scale coefficient and $$ \epsilon (t) $$ ϵ ( t ) is a positive nonincreasing function, $$\gamma (t)$$ γ ( t ) , $$ \beta (t) $$ β ( t ) and $$ \epsilon (t) $$ ϵ ( t ) are all continuously differentiable. This system has applications in the fields of mechanics and optimization. Based on the proper tuning of $$ \gamma (t) $$ γ ( t ) and $$ \beta (t) $$ β ( t ) , we obtain the convergence rates for the values, and the conclusion is that, under the different conditions, the trajectories either converge to one minimizer of $$ \Phi $$ Φ weakly, or converge to one common minimizer of $$ \Phi $$ Φ and U weakly. When $$ \epsilon (t) $$ ϵ ( t ) tends to 0 as t goes to infinity, under the condition that $$ \Phi $$ Φ or U is convex, the trajectories converge to the unique minimizer of $$ \Phi $$ Φ , or the unique minimizer of U, respectively. Finally, some particular cases are examined, and some numerical experiments are conducted to illustrate our main results.

Suggested Citation

  • Haixin Ren & Bin Ge & Xiangwu Zhuge, 2023. "Fast Convergence of Inertial Gradient Dynamics with Multiscale Aspects," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 461-489, February.
  • Handle: RePEc:spr:joptap:v:196:y:2023:i:2:d:10.1007_s10957-022-02124-w
    DOI: 10.1007/s10957-022-02124-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-022-02124-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-022-02124-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. NESTEROV, Yurii, 2013. "Gradient methods for minimizing composite functions," LIDAM Reprints CORE 2510, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. J. Bolte, 2003. "Continuous Gradient Projection Method in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 119(2), pages 235-259, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaiwen Ma & Nikolaos V. Sahinidis & Sreekanth Rajagopalan & Satyajith Amaran & Scott J Bury, 2021. "Decomposition in derivative-free optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 269-292, October.
    2. Hao Wang & Hao Zeng & Jiashan Wang, 2022. "An extrapolated iteratively reweighted $$\ell _1$$ ℓ 1 method with complexity analysis," Computational Optimization and Applications, Springer, vol. 83(3), pages 967-997, December.
    3. A. Scagliotti & P. Colli Franzone, 2022. "A piecewise conservative method for unconstrained convex optimization," Computational Optimization and Applications, Springer, vol. 81(1), pages 251-288, January.
    4. Ren Jiang & Zhifeng Ji & Wuling Mo & Suhua Wang & Mingjun Zhang & Wei Yin & Zhen Wang & Yaping Lin & Xueke Wang & Umar Ashraf, 2022. "A Novel Method of Deep Learning for Shear Velocity Prediction in a Tight Sandstone Reservoir," Energies, MDPI, vol. 15(19), pages 1-20, September.
    5. Zhaosong Lu & Xiaojun Chen, 2018. "Generalized Conjugate Gradient Methods for ℓ 1 Regularized Convex Quadratic Programming with Finite Convergence," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 275-303, February.
    6. Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
    7. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.
    9. Dimitris Bertsimas & Ryan Cory-Wright, 2022. "A Scalable Algorithm for Sparse Portfolio Selection," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1489-1511, May.
    10. Dewei Zhang & Yin Liu & Sam Davanloo Tajbakhsh, 2022. "A First-Order Optimization Algorithm for Statistical Learning with Hierarchical Sparsity Structure," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1126-1140, March.
    11. Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
    12. Liu, Yulan & Bi, Shujun, 2019. "Error bounds for non-polyhedral convex optimization and applications to linear convergence of FDM and PGM," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 418-435.
    13. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.
    14. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    15. Ching-pei Lee & Stephen J. Wright, 2019. "Inexact Successive quadratic approximation for regularized optimization," Computational Optimization and Applications, Springer, vol. 72(3), pages 641-674, April.
    16. Le Thi Khanh Hien & Cuong V. Nguyen & Huan Xu & Canyi Lu & Jiashi Feng, 2019. "Accelerated Randomized Mirror Descent Algorithms for Composite Non-strongly Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 541-566, May.
    17. Ya-Feng Liu & Xin Liu & Shiqian Ma, 2019. "On the Nonergodic Convergence Rate of an Inexact Augmented Lagrangian Framework for Composite Convex Programming," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 632-650, May.
    18. Min Li & Xiaoming Yuan, 2015. "A Strictly Contractive Peaceman-Rachford Splitting Method with Logarithmic-Quadratic Proximal Regularization for Convex Programming," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 842-858, October.
    19. Reza Eghbali & Maryam Fazel, 2017. "Decomposable norm minimization with proximal-gradient homotopy algorithm," Computational Optimization and Applications, Springer, vol. 66(2), pages 345-381, March.
    20. NESTEROV, Yu. & SHIKHMAN, Vladimir, 2014. "Convergent subgradient methods for nonsmooth convex minimization," LIDAM Discussion Papers CORE 2014005, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:196:y:2023:i:2:d:10.1007_s10957-022-02124-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.