Globalized inexact proximal Newton-type methods for nonconvex composite functions
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-020-00243-6
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- NESTEROV, Yurii, 2013. "Gradient methods for minimizing composite functions," LIDAM Reprints CORE 2510, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Hiva Ghanbari & Katya Scheinberg, 2018. "Proximal quasi-Newton methods for regularized convex optimization with linear and accelerated sublinear convergence rates," Computational Optimization and Applications, Springer, vol. 69(3), pages 597-627, April.
- Ching-pei Lee & Stephen J. Wright, 2019. "Inexact Successive quadratic approximation for regularized optimization," Computational Optimization and Applications, Springer, vol. 72(3), pages 641-674, April.
- Kimon Fountoulakis & Rachael Tappenden, 2018. "A flexible coordinate descent method," Computational Optimization and Applications, Springer, vol. 70(2), pages 351-394, June.
- Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
- Lorenzo Stella & Andreas Themelis & Panagiotis Patrinos, 2017. "Forward–backward quasi-Newton methods for nonsmooth optimization problems," Computational Optimization and Applications, Springer, vol. 67(3), pages 443-487, July.
- P. Tseng & S. Yun, 2009. "Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 513-535, March.
- Lukas Meier & Sara Van De Geer & Peter Bühlmann, 2008. "The group lasso for logistic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 53-71, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Christian Kanzow & Theresa Lechner, 2022. "COAP 2021 Best Paper Prize," Computational Optimization and Applications, Springer, vol. 83(3), pages 723-726, December.
- Behzad Azmi & Marco Bernreuther, 2025. "On the forward–backward method with nonmonotone linesearch for infinite-dimensional nonsmooth nonconvex problems," Computational Optimization and Applications, Springer, vol. 91(3), pages 1263-1308, July.
- Ruyu Liu & Shaohua Pan & Yuqia Wu & Xiaoqi Yang, 2024. "An inexact regularized proximal Newton method for nonconvex and nonsmooth optimization," Computational Optimization and Applications, Springer, vol. 88(2), pages 603-641, June.
- Simeon vom Dahl & Christian Kanzow, 2024. "An inexact regularized proximal Newton method without line search," Computational Optimization and Applications, Springer, vol. 89(3), pages 585-624, December.
- Helmut Gfrerer, 2025. "On a globally convergent semismooth* Newton method in nonsmooth nonconvex optimization," Computational Optimization and Applications, Springer, vol. 91(1), pages 67-124, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ching-pei Lee & Stephen J. Wright, 2020. "Inexact Variable Metric Stochastic Block-Coordinate Descent for Regularized Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 151-187, April.
- Tianxiang Liu & Akiko Takeda, 2022. "An inexact successive quadratic approximation method for a class of difference-of-convex optimization problems," Computational Optimization and Applications, Springer, vol. 82(1), pages 141-173, May.
- Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
- Ching-pei Lee & Stephen J. Wright, 2019. "Inexact Successive quadratic approximation for regularized optimization," Computational Optimization and Applications, Springer, vol. 72(3), pages 641-674, April.
- Jin Zhang & Xide Zhu, 2022. "Linear Convergence of Prox-SVRG Method for Separable Non-smooth Convex Optimization Problems under Bounded Metric Subregularity," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 564-597, February.
- Bastian Pötzl & Anton Schiela & Patrick Jaap, 2022. "Second order semi-smooth Proximal Newton methods in Hilbert spaces," Computational Optimization and Applications, Springer, vol. 82(2), pages 465-498, June.
- Dewei Zhang & Yin Liu & Sam Davanloo Tajbakhsh, 2022. "A First-Order Optimization Algorithm for Statistical Learning with Hierarchical Sparsity Structure," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1126-1140, March.
- Mingrui Zhong & Zanhua Yin & Zhichao Wang, 2023. "Variable Selection for Sparse Logistic Regression with Grouped Variables," Mathematics, MDPI, vol. 11(24), pages 1-21, December.
- R. Lopes & S. A. Santos & P. J. S. Silva, 2019. "Accelerating block coordinate descent methods with identification strategies," Computational Optimization and Applications, Springer, vol. 72(3), pages 609-640, April.
- Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
- Bilin Zeng & Xuerong Meggie Wen & Lixing Zhu, 2017. "A link-free sparse group variable selection method for single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2388-2400, October.
- Olga Klopp & Marianna Pensky, 2013. "Sparse High-dimensional Varying Coefficient Model : Non-asymptotic Minimax Study," Working Papers 2013-30, Center for Research in Economics and Statistics.
- Qingyang Liu & Yuping Zhang, 2023. "Integrative Structural Learning of Mixed Graphical Models via Pseudo-likelihood," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(3), pages 562-582, December.
- Osamu Komori & Shinto Eguchi & John B. Copas, 2015. "Generalized t-statistic for two-group classification," Biometrics, The International Biometric Society, vol. 71(2), pages 404-416, June.
- Luu, Tung Duy & Fadili, Jalal & Chesneau, Christophe, 2019. "PAC-Bayesian risk bounds for group-analysis sparse regression by exponential weighting," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 209-233.
- Lee, In Gyu & Yoon, Sang Won & Won, Daehan, 2022. "A Mixed Integer Linear Programming Support Vector Machine for Cost-Effective Group Feature Selection: Branch-Cut-and-Price Approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1055-1068.
- Ruidi Chen & Ioannis Ch. Paschalidis, 2022. "Robust Grouped Variable Selection Using Distributionally Robust Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1042-1071, September.
- Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
- Liu, Yulan & Bi, Shujun, 2019. "Error bounds for non-polyhedral convex optimization and applications to linear convergence of FDM and PGM," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 418-435.
- A. Karagrigoriou & C. Koukouvinos & K. Mylona, 2010. "On the advantages of the non-concave penalized likelihood model selection method with minimum prediction errors in large-scale medical studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(1), pages 13-24.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:78:y:2021:i:2:d:10.1007_s10589-020-00243-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.