IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v185y2020i3d10.1007_s10957-020-01676-z.html
   My bibliography  Save this article

Diagonal Approximation of the Hessian by Finite Differences for Unconstrained Optimization

Author

Listed:
  • Neculai Andrei

    (Academy of Romanian Scientists)

Abstract

A new quasi-Newton method with a diagonal updating matrix is suggested, where the diagonal elements are determined by forward or by central finite differences. The search direction is a direction of sufficient descent. The algorithm is equipped with an acceleration scheme. The convergence of the algorithm is linear. The preliminary computational experiments use a set of 75 unconstrained optimization test problems classified in five groups according to the structure of their Hessian: diagonal, block-diagonal, band (tri- or penta-diagonal), sparse and dense. Subject to the CPU time metric, intensive numerical experiments show that, for problems with Hessian in a diagonal, block-diagonal or band structure, the algorithm with diagonal approximation of the Hessian by finite differences is top performer versus the well-established algorithms: the steepest descent and the Broyden–Fletcher–Goldfarb–Shanno. On the other hand, as a by-product of this numerical study, we show that the Broyden–Fletcher–Goldfarb–Shanno algorithm is faster for problems with sparse Hessian, followed by problems with dense Hessian.

Suggested Citation

  • Neculai Andrei, 2020. "Diagonal Approximation of the Hessian by Finite Differences for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 859-879, June.
  • Handle: RePEc:spr:joptap:v:185:y:2020:i:3:d:10.1007_s10957-020-01676-z
    DOI: 10.1007/s10957-020-01676-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-020-01676-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-020-01676-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Bartholomew-Biggs, 2008. "Nonlinear Optimization with Engineering Applications," Springer Optimization and Its Applications, Springer, number 978-0-387-78723-7, September.
    2. Neculai Andrei, 2017. "Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology," Springer Optimization and Its Applications, Springer, number 978-3-319-58356-3, September.
    3. David G. Luenberger & Yinyu Ye, 2016. "Linear and Nonlinear Programming," International Series in Operations Research and Management Science, Springer, edition 4, number 978-3-319-18842-3, September.
    4. Neculai Andrei, 2017. "Applications of Continuous Nonlinear Optimization," Springer Optimization and Its Applications, in: Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology, chapter 0, pages 47-117, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wumei Sun & Hongwei Liu & Zexian Liu, 2021. "A Class of Accelerated Subspace Minimization Conjugate Gradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 811-840, September.
    2. Shi, Yanlin, 2022. "A closed-form estimator for the Markov switching in mean model," Finance Research Letters, Elsevier, vol. 44(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Ćalasan & Tatjana Konjić & Katarina Kecojević & Lazar Nikitović, 2020. "Optimal Allocation of Static Var Compensators in Electric Power Systems," Energies, MDPI, vol. 13(12), pages 1-24, June.
    2. Neculai Andrei, 2018. "A Double-Parameter Scaling Broyden–Fletcher–Goldfarb–Shanno Method Based on Minimizing the Measure Function of Byrd and Nocedal for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 191-218, July.
    3. Qiwei Yang & Yantai Huang & Qiangqiang Zhang & Jinjiang Zhang, 2023. "A Bi-Level Optimization and Scheduling Strategy for Charging Stations Considering Battery Degradation," Energies, MDPI, vol. 16(13), pages 1-15, June.
    4. Y. Bai & E. Hashorva & G. Ratovomirija & M. Tamraz, 2016. "Some Mathematical Aspects of Price Optimisation," Papers 1605.05814, arXiv.org.
    5. Sandra S. Y. Tan & Antonios Varvitsiotis & Vincent Y. F. Tan, 2021. "Analysis of Optimization Algorithms via Sum-of-Squares," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 56-81, July.
    6. Michael K. McWilliam & Antariksh C. Dicholkar & Frederik Zahle & Taeseong Kim, 2022. "Post-Optimum Sensitivity Analysis with Automatically Tuned Numerical Gradients Applied to Swept Wind Turbine Blades," Energies, MDPI, vol. 15(9), pages 1-19, April.
    7. repec:hal:wpspec:info:hdl:2441/4lhe3u3c38ojohjlcbfaupcjr is not listed on IDEAS
    8. Hedlund, Jonas, 2017. "Bayesian persuasion by a privately informed sender," Journal of Economic Theory, Elsevier, vol. 167(C), pages 229-268.
    9. Hasui, Kohei & Kobayashi, Teruyoshi & Sugo, Tomohiro, 2021. "Optimal irreversible monetary policy," European Economic Review, Elsevier, vol. 134(C).
    10. François Le Grand & Xavier Ragot, 2022. "Managing Inequality Over Business Cycles: Optimal Policies With Heterogeneous Agents And Aggregate Shocks," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(1), pages 511-540, February.
    11. Jason Xu & Eric C. Chi & Meng Yang & Kenneth Lange, 2018. "A majorization–minimization algorithm for split feasibility problems," Computational Optimization and Applications, Springer, vol. 71(3), pages 795-828, December.
    12. Nguyen Ngoc Luan & Do Sang Kim & Nguyen Dong Yen, 2022. "Two Optimal Value Functions in Parametric Conic Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 574-597, June.
    13. Qiang Fu & Tian‐Yi Zhou & Xin Guo, 2021. "Modified Poisson regression analysis of grouped and right‐censored counts," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1347-1367, October.
    14. Mohammed A. El-Shorbagy & Islam M. Eldesoky & Mohamady M. Basyouni & Islam Nassar & Adel M. El-Refaey, 2022. "Chaotic Search-Based Salp Swarm Algorithm for Dealing with System of Nonlinear Equations and Power System Applications," Mathematics, MDPI, vol. 10(9), pages 1-30, April.
    15. François Le Grand & Xavier Ragot, 2022. "Managing Inequality Over Business Cycles: Optimal Policies With Heterogeneous Agents And Aggregate Shocks," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(1), pages 511-540, February.
    16. Arash Asadpour & MohammadHossein Bateni & Kshipra Bhawalkar & Vahab Mirrokni, 2019. "Concise Bid Optimization Strategies with Multiple Budget Constraints," Management Science, INFORMS, vol. 65(12), pages 5785-5812, December.
    17. Nitish Das & P. Aruna Priya, 2019. "A Gradient-Based Interior-Point Method to Solve the Many-to-Many Assignment Problems," Complexity, Hindawi, vol. 2019, pages 1-13, July.
    18. Wenqiang Dai & Meng Zheng & Xu Chen & Zhuolin Yang, 0. "Online economic ordering problem for deteriorating items with limited price information," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-23.
    19. Kohei Hasui & Teruyoshi Kobayashi & Tomohiro Sugo, 2019. "Irreversible monetary policy at the zero lower bound," Discussion Papers 1906, Graduate School of Economics, Kobe University.
    20. Ossama Abdelkhalik, 2013. "Hidden Genes Genetic Optimization for Variable-Size Design Space Problems," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 450-468, February.
    21. Janosch Rieger, 2021. "A Galerkin approach to optimization in the space of convex and compact subsets of $${\mathbb {R}}^d$$ R d," Journal of Global Optimization, Springer, vol. 79(3), pages 593-615, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:185:y:2020:i:3:d:10.1007_s10957-020-01676-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.